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Abstract
	Calcium is a vital nutrient in both plants and humans, providing the basis for many vital biological processes. This study attempts to identify genes that are important in calcium uptake and storage in Broccoli (B. oleracea) and match them with quantitative trait loci (QTLs) provided to us by our NC State University collaborators. Using two different search tools, tBLASTn and the IGB genome browser, we mined the B. oleracea genome for candidate genes within 1,000,000 bp of the QTLs. We successfully identified genes near all seven QTLs. The proteins coded for by these genes belong to four different protein categories: ion channels, ATP-driven calcium pumps, H+-driven calcium pumps, and calcium binding proteins. Having identified likely candidate genes in all four protein categories in our results, we have provided evidence for a comprehensive model for calcium transport and storage in B. oleracea that match up well with the QTL list we were provided. SSRs? 
Introduction
	Calcium is a divalent cation that is an integral component in a vast number of biological systems in both plants and animals, particularly those related to growth and homeostasis. In plants, calcium provides strength and stability to the cell by forming pectate cross-links within the cell wall (Conn et al., 2011), acts as an intracellular messenger in the cytosol in signal transduction events, and provides a basis for stress responses in the plant as a counter-cation exchanger (White et al., 2003). Calcium is rarely lacking in most soils, but is can become scarce in an agricultural setting where calcium is often rapidly depleted from the soil. Calcium deficiency in plants results in weakened cell walls that can lead to a variety of horticultural diseases, such as blossom-end rot in tomato or tipburn in lettuce (White et al., 2003).
	Uptake and transport of calcium in a plant occurs through two main pathways: the symplastic pathway (through cells) and the apoplastic pathway (between cells). Both are equally important pathways and provide distinct advantages and disadvantages to the plant. Apoplastic transport, which constitutes the majority of calcium transport in the plant (Conn et al., 2011), keeps calcium from coming into contact with the cytosol of the cell, which must remain at a submicromolar level of Ca2+ so as not to trigger the many calcium-dependent enzymes that reside in the cell cytoplasm (White et al., 2003). However, apoplastic transport is strongly affected by transpiration, which can lead to inconsistencies in the amount of calcium supplied to certain tissues like the shoot, and could ultimately lead to calcium disorders in the tissue (White et al., 2003). Apoplastic transport is relatively non-selective in which divalent cations it transports, meaning toxic cations could also enter (White et al., 2003). Conversely, symplastic transport often involves highly selective cation transporters, but is limited in how fast transport can occur, since rapid symplastic transport of Ca2+ would upset the carefully maintained submicromolar Ca2+ concentration in the cytoplasm (White et al., 2003).
	Though a large amount of Ca2+ is stored in the cell wall of plants and in the apoloplast (Hirschi, 2004), it is also very often sequestered in other areas of the cell, including the vacuole, the endoplasmic reticulum, and the chloroplast, with the vacuole acting as the most prominent Ca2+ sink (Hirschi, 2004). These storage areas are essential for proper cellular function, as they allow intracellular Ca2+ to be removed from the cytosol and stored at high concentrations in areas that can be tapped rapidly when required by the cell for the calcium signaling events (Tuteja et al., 2007). 
[image: C:\Users\James\Downloads\Screen Shot 2014-02-13 at 1.28.28 PM.png]Figure 1. Image outlining several different types of calcium transport proteins and how they function. 3 main types of proteins are shown: ions channels (e.g. GORK), ATP-driven calcium pumps (e.g. ECA1), and H+-driven calcium antiporter pumps (e.g. CAX). This figure also displays the major organelles involved in calcium storage, the vacuole and the endoplasmic reticulum. Image is from White et al. 2003.

There are a variety of protein-coding genes involved in calcium transport and storage within plants (Figure 1), but they can be grouped generally into one of four categories. The first category comprises various ion channels, which are often located within the plasma membrane. These integral proteins mediate passive entry of Ca2+ into the cytosol of the cell, and are driven by the large gradient differential between the apoplast and the cytosol (Hirschi, 2004). These ion channels are generally voltage-gated channels that are triggered by changes in cytosolic voltage (Hirschi, 2004). While these channels are extremely important in facilitating Ca2+ influx into the cytosol, it is not correct to refer to them as “Ca2+ channels;” rather, they are more correctly described as “Ca2+-permeable channels,” as they are very often non-specific to calcium and facilitate the influx of other divalent cations into the cytosol as well (Sanders et al., 2002). There are similar voltage-gated channels located on the endomembranes of the calcium sequestering organelles, and allow for efflux of Ca2+ from the organelle into the cytosol. In addition to the majority of plasma membrane ion channels that are voltage-gated, there is also a smaller group of proteins that are non-gated and allow unregulated passive diffusion to a variety of different ions into the cytosol. These channels often discriminate poorly between monovalent and divalent cations (Sanders et al., 2002). These channels provide a non-specific route for many ions into the cytosol, meaning they would likely serve a wide variety of cellular functions that are unrelated to calcium transport (Sanders et al., 2002). 
The second and third groups of calcium transport proteins are those responsible for calcium efflux from the cytosol, and are both calcium pump proteins. The first is composed of ATP-driven calcium pump proteins, endomembrane proteins that allow for active (ATP-driven) transport of Ca2+ ions into the sequestering organelles. These Ca2+ pumps are located primarily on the endoplasmic reticulum and on the chloroplast (Sanders et al., 2002). The second group comprises the Ca2+/H+ exchangers, which facilitate active transport of Ca2+ across the gradient without direct ATP expenditure. These calcium “antiporters” pump Ca2+ out of the cytosol and into the sequestering organelle like the standard calcium pumps, but are driven by the downhill flow of H+ ions across the gradient into the cytosol rather than ATP. Although these calcium antiporters are located primarily in the vacuolar membrane, there is evidence that they may also exist in the plasma membrane (Sanders et al., 2002). 
The fourth and final group of important calcium proteins within plants includes the calcium binding proteins. These proteins are also split into two distinct groups: those that bind to free cytosolic Ca2+ in order to dampen cytosolic Ca2+ concentrations, and those that bind to Ca2+ to initiate one of the innumerable signal transduction events that occur in plant cells (Hirschi, 2004). The former group consists of integral membrane proteins found primarily on the endoplasmic reticulum (Roderick et al., 2000). These proteins bind to calcium and store it in a relatively inactive state. The latter group, the proteins that initiate signal transduction, is extremely diverse in what the proteins eventually activate. Structurally, most of these calcium-binding proteins contain multiple “helix-loop-helix” structures (coined “EF hand”) that are each capable of binding to and holding a Ca2+ ion (White et al., 2003). The binding of the Ca2+ allosterically modulates these binding proteins, activating them as signaling proteins to in turn activate something else. 
In this paper, we investigate several protein-coding genes involved in calcium uptake and storage as they appear in the genome of broccoli (Brassica oleracea). In humans, calcium is responsible for a wide range of biological processes, including muscle contraction, cell signaling, and regulation of enzyme activity (Reuter, 1983), in addition to being exceedingly important in bone strength and osteoporosis prevention (Dawson-Hughes et al., 1997). Our goal was to identify and locate genes that increase overall storage of calcium in B. oleracea, particularly in the florets. After looking through the primary literature, we compiled a list of candidate genes to search for in the B. oleracea genome based on the most noteworthy genes involved in calcium transport and storage in the model plant species, Arabidopsis Thaliana, that we predicted would also be present in B. oleracea (Table 1). From our collaborators at North Carolina State University, we received a chromosome map of quantitative trait loci (QTLs) in B. oleracea that outlined probable areas on the genome for calcium uptake genes. QTLs are stretches of a chromosome that have been identified as responsible for affecting certain quantitative traits, calcium content in his case. The goal of our study, then, was to determine which candidate genes identified in the primary literature best correlated to the QTL map provided to us.



	Protein Type
	Gene Name
	Location 
	Details

	 
	
	 
	 

	 
	Glutamate 
Receptor

	Plasma Membrane


	 Ligand-gated cation channel that is well documented in causing Ca2+ influx in plants. (Dennison et al., 2000)


	Ion Channels
	GORK


	Plasma Membrane


	Voltage-gated K+ channels that influx Ca2+ at the same time as they efflux K+ (Ache et al., 2000)
 

	 
	MCA1

	Plasma Membrane

	Ca2+-permeable mechanosensitive channel (Yamanaka et al., 2010)

	 
	
	 
	 

	
	ECA1



	Endoplasmic Reticulum


	Highly regulated Ca2+ pump that transports cytosolic Ca2+ in the Endoplasmic Reticulum (Sanders et al., 2002)


	ATP Ca pumps


	ACA


	Plasma membrane/ several organelles

	 Family of highly regulated Ca2+ pumps that act in many membranes and are activated through Ca2+/Calmodulin binding (Sanders et al., 2002)

	 
	
	 
	 

	Ca2+/H+ Antiporters
	
CAX2

	Vacuole

	 
Low affinity calcium transporter that uses diffusion of H+ into the cytosol to power Ca2+ transport to the vacuole. (Conn et al., 2011)

	
	
	
	 

	 
	
	
	

	 
	Calmodulin


	Cytoplasm


	Calcium binding protein with 4 EF-Hands. Activates genes, including ACA, and can be a ligand for ligand-gated ion channels (Sanders et al. 2002) (Luan et al., 2002)


	 
	Calcineurin B


	Cytoplasm


	Calcium binding protein with 3 EF-Hands. Activates other genes (Luan et al., 2002)
 

	Calcium-binding proteins
	Annexin


	Plasma Membrane


	A non-mobile plasma membrane calcium-binding protein. Does not bind using EF hands (Tuteja et al. 2002) (White et al., 2002)

	 
	CDPK



	Cytoplasm



	 
A superfamily of multifunctional cation-binding proteins. These genes are generally found  in the cytoplasm and have 4 EF hands. (White et al., 2002)


	 
	SOS3


	Cytoplasm


	An EF Hand protein that activates SOS2, a protein kinase, during a salt-induced stress response. (Halfter et al., 1999)



Table 1. A list of candidate genes suspected to be present in B oleracea based on their existence and importance in A. thaliana. Genes are split into four categories, and include ion channel proteins, ATP-driven calcium pumps, H+-driven calcium antiporter pumps, and calcium binding proteins. Candidate genes are listed along with their location in the cell and a brief description of their function. List based off of evidence provided by  Dennison et al. 2000, Ache et al. 2000, Yamanaka et al. 2010, Sanders et al. 2002, White et al. 2002, Tuteja et al. 2002, Luan et al. 2002, Conn et al. 2011, and Halfter et al. 1999. Don’t need citations here since they are in the boxes above. 



Methods
tBLASTn against the B. oleracea genome
	The first step to identifying candidate genes was to determine if any of the genes outlined in Table 1 appeared within 10,000,000 bp of the QTL marker on the B. oleracea genome. To determine this, we identified the specific amino acid sequences of each candidate gene in A. thaliana using the protein database on NCBI. We used the proteins in A. thaliana under the premise that it is one of the best studied plant species, and that it is relatively closely related to B. oleracea. Next, we did a tBLASTn protein alignment comparing the amino acid sequence for the target gene with the genome of B. oleracea, noting any candidate gene that appeared within 10,000,000 bp of one of the QTL markers on the genome. Access to the yet unpublished B. oleracea for tBLASTn analysis was provided by our collaborators through dev.vaccinium.org. 
Genome browsing using IGB
	Our next goal was twofold: to both verify the existence of the candidate genes located through the tBLASTn method and to visually search for any additional candidate genes near the QTLs. To do this, we used IGB, a genome browsing tool, to search for candidate genes. IGB uses software to predict genes on the genome and automatically annotate them. For our purposes, we uploaded the genome of B. oleracea and searched through the annotations predicted by the program. We specifically targeted the genes identified previously using tBLASTn in order to verify their existence, but also searched for any candidate genes that might appear in IGB but had been missed by the tBLASTn search. Based on new information received at the time, we restricted our potential range around the QTL from 10,000,000 bp to 1,000,000 bp. We then went back to tBLAStn with the genes located on IGB and reanalyzed those sequences against the B. oleracea genome to reconfirm their existence in the genome. Our final list of candidate genes based on the QTL map provided by our collaborators therefore included all genes identified within 1,000,000 bp of the QTL using either the tBLASTn tool or the IGB genome browsing tool.
Simple Sequence Repeat (SSR) selection
	The final step of the process was to locate Simple Sequence Repeats (SSRs) for each candidate gene identified through tBLASTn and IGB browsing. These SSRs were either di- or tri-nucleotide repeats that occurred within 25,000 bp of the candidate gene on the genome. We used a list of SSRs provided by our collaborators at NC State University, and reported the three SSRs from the list that were closest to each candidate gene.
Results
	Figure 1 shows a visual representation of all candidate genes identified in the B. oleracea chromosomes within 1,000,000 bp of the QTLs. We mined all seven QTL-containing chromosomes and successfully located candidate genes on each chromosome within 1,000,000 bp of the QTL. Additionally, all candidate genes identified using tBLASTn were successfully verified on the IGB genome browser across all chromosomes.
	On Chromosome 2 (Figure2.C2), we located an ECA1 gene 863,690 bp away from the QTL, a CDPK gene 695,791 bp away from the QTL, and an Annexin gene 66,953 bp away from the QTL. We marked Annexin with a star, as we felt it was a particularly good candidate gene for this QTL based on location alone?. On Chromosome 3 (Figure2.C3), we located a calmodulin gene -559,591 bp away from the QTL, and an ECA1 gene +316,918 bp away from the QTL. On chromosome 4 (Figure 2.C4), we located Calmodulin genes both 648,112 bp away and 611,550 bp away from the QTL and a CAX2 gene 156,012 bp away from the QTL. Both Calmodulins were located exclusively through the IGB genome browser, not through the initial tBLASTn searching. Also, we marked CAX2 with a star, as we felt it was a particularly good candidate. On Chromosome 5 (Figure 2.C5), we located a Glutamate receptor gene +593,265 bp away from the QTL, a CDPK gene 515,393 bp away from the QTL, and a Calmodulin gene located just 16,411 bp away from the QTL. We only found the Calmodulin gene using the IGB browser, not during initial tBLASTn searches, and we marked it with a star since it was so close to the QTL. On Chromosome 6 (Figure 2.C6), we located a CDPK gene 351,140 bp away from the QTL, and a Calcium-binding EF-Hand gene 1,082,871 bp away from the QTL. The Calcium-binding EF-Hand gene was found only on IGB, and we were unable to identify which of the EF-Hand type calcium binding proteins it was. On Chromosome 7 (Figure 2.C7), we located a GORK gene -847,396 bp away from the QTL, a Calcineurin B-like protein -764,045 bp away, a CDPK gene -75,355 bp away, a SOS3 gene +77,549 bp away, a MCA1 gene +79,407 bp away, an ECA1 gene +606,917 bp away, and a Calmodulin gene +922,205 bp away from the QTL. We marked the CDPK, SOS3, and MCA1 genes with stars as they were all within 100,000 bp of the QTL, meaning these are all excellent candidate genes. Lastly, on Chromosome 8 (Figure 2.8C), we located a CDPK gene +434,424 bp away from the QTL, an ECA1 gene (labeled H-ATPase on IGB) +302,089 bp away, and a Calmodulin gene -93,517 bp away from the QTL. We marked this last Calmodulin with a star as well, as it was less than 100,000 bp away from the QTL.
	After compiling all of the good candidate genes that we had identified, we created a list of SSRs that were close to each of the candidate genes (Table 2). These SSRs were all either di- or tri-nucleotide repeats that were referenced from a list of SSRs provided by our collaborators at North Carolina State University. We chose the three closest SSRs to each candidate gene, and all SSRs selected were within 25,000 bp of the candidate genes. In Table 2, we provide both the forward and reverse primer sequences of the SSR, the nucleotide length of the SSR, and the starting nucleotide of the SSR.
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Figure 2. B. oleracea chromosomes displaying candidate genes related to calcium uptake and storage located within 1,000,000 bp of each target QTL. C2 – C8 refer to the respective B. oleracea chromosomes. Each map displays the range of 1,000,000 bp above and below the QTL marker, with nucleotide number increasing from top to bottom. Each QTL marker is shown in red in the middle of each chromosome with its exact nucleotide location shown to the right. Candidate genes that were located using both IGB and tBLASTn are displayed in black, and those that were located through IGB exclusively are displayed in green. Gene names are to the left of the chromosome, and their exact nucleotide locations are on the right. A star indicates a particularly good candidate gene that appeared within 150,000 bp of the QTL. 

[image: ]
Table 2. List of Simple Sequence Repeats (SSRs) located near candidate genes. Each candidate gene located within 1,000,000 bp of a QTL is displayed in the table along with its nucleotide location on the chromosome. Each gene is displayed with the three nearest SSRs from the SSR list provided by our collaborators. The size, starting location, and forward and reverse primer sequences for each SSR are shown to the right of the candidate gene. Candidate genes are organized by chromosome.

Discussion
	Based on the results we received from our tBLASTn searching and IGB browsing, we feel confident saying that we have located excellent candidate genes for all of the QTLs provided to us by our collaborators at NC State University. Using tBLASTn, we located almost all of our initial genes of interest from the literature within 1,000,000 bp of the QTLs. We are even more confident in the presence of these genes and their importance as candidate genes because we were successfully located each candidate gene using the IGB genome browser as a compliment to the tBLASTn results.
	We were very excited to identify and locate several genes coding for calcium pumps and ion channels, as these two types of proteins directly lead to transport and storage of Ca2+ in different parts of the cell. We located ECA1 on chromosomes 2, 3, and 7 and CAX2 very close to the QTL on chromosome 4. These two genes code for calcium pumps that sequester cytosolic Ca2+ into two important Ca2+ sinks, the endoplasmic reticulum and the vacuole of the cell. These two genes are potentially two excellent candidates, as transport into calcium sink organs is the final step of the journey in storing calcium in plants. Additionally, we identified a glutamate receptor gene on chromosome 5 and both the GORK gene and the MCA1 gene on chromosome 7. These three genes code for gated ion channels in the plasma membrane that allow for controlled influx of apoplastic calcium into the cytosol of the plant. These channels are also very important for achieving the final goal of calcium storage, as increasing the influx of calcium into the cytosol must occur first in order for the calcium pump genes, ECA1 and CAX2, to function. Together, these two types of genes work together to transport calcium from the apoplast to storage in the calcium sink organs.
	In addition to calcium pump and ion channel genes, we also identified several calcium binding genes. We located annexin on chromosome 2, calcium-dependent protein kinase (CDPK) on chromosomes 2, 4, 5, 6, 7, and 8, a calcineurin B-like gene on chromosome 7, an SOS3 gene on chromosome 7, and finally calmodulin genes on chromosomes 3, 4, 5, 7, and 8. We also located the unidentified EF-hand calcium binding protein on chromosome 6. While these genes do not code for calcium sequestering proteins that store away calcium, they do play a very important role in the grand scheme of calcium storage. Apart from Annexin, all of these genes code for free floating cytosolic proteins that bind calcium molecules and act as second messengers to activate other genes. At first glance, it appears that these proteins would not be significant in the overall goal of calcium storage and accumulation. However, some of these proteins are actually responsible for activating other calcium storage proteins. For example, Sanders et al. report that calmodulin is responsible for directly activating ACA genes, a large family of calcium pump proteins (similar to ECA1) that are located in the plasma membrane, the vacuole, the endoplasmic reticulum, and the plastid (Sanders et al., 2002). Calmodulin and the other calcium binding proteins could therefore prove important in indirectly increasing the amount of calcium transport and storage occurring in the cell. 
	As a final step in assessing the likelihood of our candidate genes matching the QTLs, we referenced the TAIR database (www.arabidopsis.org), a database dedicated to research done on many aspects of A. thaliana. We used this database to verify that all of the abovementioned genes were not just expressed in the plant, but were specifically expressed in the florets of the plant, as this is the most important area of the plant when considering increasing stored calcium for human benefit. Using this tool, we verified that all candidate genes (except for ECA1) were indeed expressed in the florets of the plant, in addition to other areas. ECA1 is reported to be expressed primarily in the guard cells and the plant callus of plants, but we decided to report it in or results given that it’s a very significant gene in calcium transport regardless.
[bookmark: _GoBack]	Ultimately, there is much at stake in identifying the genes in B. oleracea that are most important to calcium uptake and storage. B. oleracae has previously been noted to be an excellent source of dietary calcium for humans (Heaney et al., 1990) and shows potential, based on the data collected during this study, to be an accumulator of additional calcium to further supplement the human diet. Using both tBLASTn and IGB, we have compiled a comprehensive list of candidate genes in B. oleracea that could be targeted to increase calcium transport and storage. These candidate genes form a complete model for calcium transport and storage, including apoplastic Ca2+ efflux into the cytoplasm, cytoplasmic Ca2+ binding, signaling, and gene activation, and finally Ca2+ influx into calcium storing organelles. Further research will need to be done to determine which of the candidate genes we have identified are correct matches to the different calcium related QTLs provided to us by our collaborators.
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Chromosome Gene/location Forward Reverse Size (bp) Start location

2 Annexin AATCTCAATACAGATTCGTG                              ACTTACTGCTTTGTTGATGT 362 52,278,399

52,274,901 ATACGCAATACAAAGACAAT ATGCATTTTGTAGCTTAGAG 318 52,281,849

ACTTTCTGCATATTGGATTA CAGAAAGATAGACAAACCTG 270 52,272,679

CDPK TCCTAGAGAATCAAATCAAA                              AAGGAAAGTAATAGAAACGC                               341 51,513,385

51,512,157 ATCGAAAAACAACTATACCA                              GGAAGTGTAACCACTTATCA                               321 51,503,791

AAATCAAAAATCACACAAAC                              GACGAATTGATAAACTATGC                               207 51,531,376

ECA1 GGAATCACTAGAAACAAAAA                              CAATATAAATGAAGCGTCTC                               350 51,543,248

51,344,258 ATTTTATTATTCACGCTTTG                              TGTTTTTCTCATTTCACTTT                               201 51,536,483

AATTTGAAACTCTATCGTCA                              TATTTGAAAAGTGAATTTGG                               321 51,535,106

3 Calmodulin GAAGAGATTGGAGAGAAGAT                              CAAAGTCTCAGAAGAAAGTG                               291 33,886,935

33,900,215 ACAGACACCAGTGTATGATT                              GTTTGGAAATGGTAATTAAA                               150 33,906,863

TATAGCAAATGGAAATTAGG                              CTTCATGTGTATTTTTGGAT                               186 33,881,073

ECA1 CGTTCATATGGATGTAGAGT                              GGATTTTTCGTGTACTTATG                               154 34,774,902

34,776,724 GATTAGAGATTTTTGTGCTG                              GGATTTTTCGTGTACTTATG                               367 34,774,777

ACATTAACAAAATGGGTAAA                              AGAAACATTTTAACAGCAAG                               383 34,773,390

4 CAX2 AAATTTACTAGAATGGGACC                              CATCTCCAAGAATAGAGTGA                               299 6,058,417

6,056,506 AGCTTACAATGATGTGAATC                              GTTGGAGCATTACTTGTTAC                               306 6,059,159

TACCACTTAACCACAATCTC                              AGAGCATCACAAAACTCTAA                               166 6,050,627

CDPK ATCAGATTTTCACTTCGTTA                              AATAAAATGCACAAACATCT                               290 5,642,214

5,644,713 AGTTTGATGATGAGTGTTGT                              CCATTCTTGATTCTATTTTG                               337 5,648,302

GAATTTTAAATGAAATGTGC                              TAAAGTGATCCAAGTCAAAC                               388 5,637,220

Calmodulin GTTGTCAATATTTGTTCGAT                              TTGTTAAAAGCCTCATATTC                               257 5,438,196

5,444,956 CGAAAATCAAAATCTCATAC                              AAGTCTTTGTAGACCATGTG                               305 5,430,487

CGAAAATCAAATTCTCATAC                              AATATAGGGTTTAACGGAGT                               338 5,423,552

Calmodulin CTCTCTGAGTTATCATTCCA                              CTTGTTAAAGAAACCAAGAA                               334 5,415,246

5,408,394 TGAAACACTAGATTCTGACC                              GTATGAGAATTTGATTTTCG                               330 5,423,115

CAAACCAAACAACATAAGAT                              TTCTCACTGCAGAGTAAAAT                               346 5,393,058

5 CDPK ATATCCGGAAAACTTTAGAT                              ATAATAAAATGCAATATCCG                               337 1,644,534

1,646,469 TACCTTCATTTACACTTGGT                              AATAGAGAAGATTTTGGGTC                               163 1,642,785

CCTTTCTCTCTGATGACAC                               AGTTTCAAGGTTTCTCTTTT                               290 1,651,887

Calmodulin CACCAAACCATAATATCAAT                              TCTGATTTTTAAATTTGCTC                               350 1,147,858

1,147,487 TACGCAAAGGTTTTAGTTAC                              TCAAAAGAGAATAAACAAGC                               368 1,142,059

CTTTAAAATCCATGATTGAG                              GTTAATTTTCAATTTAAGCG                               306 1,154,360

Glutamate Rec. TTCTCTCTTCTTTACTGCTG                              GATGTAACTGGTTTTCAGAT                               397 1,728,673

1,724,341ATATCTGCTCTACGTTTTTG                              ACATACACACCTCTTCTACG                               289 1,729,332

AGCATAAGAGCTAACAACTG                              TGTTGTGACTAACTGCAATA                               361 1,716,625

6 CDPK TATATACGTGCATCTTACCA                              TTAGCAGTCATGGATAATTT                               192 34,437,713

34,439,828TAGAACGAAAATCAAGAAAG                              CAAAAATAAGTCTTTTTCCA                               219 34,441,121

ATGTTACAAAGCAAACACTT                              GAAATTTGCTATACTTTTCG                               395 34,435,947

AACAAAGATACCATTGACAC                              AGTGATGATGATGATACGTT                               102 33,005,250

ATGATGTGTTTGAAAAGAAG                              TTATCTCTTGCTCTTTCTTG                               337 33,005,882

33,005,817CGTGTAATATTAAGCCAGTT                              CGCATATGAATTTTTATTTA                               371 33,008,946

7 MCA1 AAGTCAATTGGAAAAATACA                              GAAAGCTAATAATCGACAAA                               332 47,093,031

47,091,489AGTATTGGAATGCTCAGTTA                              TGGTTAGTGAAAAAGAAAAG                               390 47,093,156

TCAAAATCGAAAGAGAGATA                              ATGAAAAACTCTCAGAAACA                               386 47,089,655

CDPK TCAGGGTCAAAGATTTAAG                               TTTAAGTTGGTGTTTGAAGT                               360 46,934,997

46,936,727GATTGAGTGAGAGTGAAGAA                              TACTCCAAAACATTTCATTT                               201 46,940,330

TAACTTGGAGATAAAGCAAG                              TGATAAGTCTTCCCTTACAA                               324 46,932,746

Calcineurin B TCTTGGCTACTTTCTTAGTG                              TTGGTAGTTCTTTTTGGATA                               399 46,251,815

46,248,037TCATATCGTACTTGTGTGTG                              AGAGTAATGGAGAGGATTGT                               399 46,261,874

GTCATTATGATTAGGGTTGA                              TTACAGCCAAAATTTCTAAC                               284 46,264,352

GORK TAGCGAAATAGTCATCATCT                              TTTCTCGATCAATCTTCTAA                               379 46,161,060

46,164,686AAGTCTAAAGACGTTGAACA                              AGATGATGACTATTTCGCTA                               234 46,160,806

TAGTGTGATACCTTGACCAT                              TAGGCAGTATAAGTTTGAGC                               319 46,160,238

ECA1 CAGAGAATGGAGAGATGTTA                              CTGAGTTCTTGACATCAGTT                               340 47,623,174

47,618,999TATTTCAAATGGTGGTTATT                              GTCTCATTGACTCCTTGTTA                               313 47,623,416

TAATTTTAAATGTAACCGCT                              AGATTAGAGAGAGCGAGACT                               354 47,611,185

Calmodulin CATACAATACGACAACATCA                              CTACTCCACAAGAGCATTAC                               177 47,936,757

47,934,287GAGATGAGAACAAGAACAGA                              ATTAGGACGTAAAATGTCAA                               384 47,937,222

TGGCAATCATTTTTACTATT                              TGTTAGATGTCCAATTTTTC                               275 47,938,112

SOS3 TCAAAATCGAAAGAGAGATA                              ATGAAAAACTCTCAGAAACA                               386 47,089,655

47,089,631AAGTCAATTGGAAAAATACA                              GAAAGCTAATAATCGACAAA                               332 47,093,031

AGTATTGGAATGCTCAGTTA                              TGGTTAGTGAAAAAGAAAAG                               390 47,093,156

8 ECA1 CAACTGTGAAGTTGGAGTAT                              TTCCTATATACACCGAGAAA                               360 30,087,997

31,087,897TTGCTATGACAAAATACAAA                              AATTAAATTGGTGTGAACAT                               370 30,090,506

GACTGGTTCGTTACATTTAG                              GACCAAATATAAAACATTCG                               284 30,094,541

CDPK TCTGATTAGCAAAGAAGAAG                              TCTAATGATGGAGATGAGAG                               277 30,224,643

31,220,232AGTACACCACACTGCATATC                              CTCATTCGAGTCAGTTACAT                               386 30,243,869

TTTGTGATCAATGGTTTAAT                              TTAGTTTTGTGGTTGACTTT                               322 30,203,750

Calmodulin CCTACAATCACACATGATCT                              CGATATGAACAAGAAAGAAT                               400 30,681,360

30,692,291CGATTGCTAAAATGAATAAT                              CATCAACAAATATTCCCTAA                               355 30,709,424

GTTATTAACCAAACATCGAC                              AGCATGTGTTTTCTTGTAGT                               395 30,711,122
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