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Abstract
Microbial engineering often requires fine control over protein expression; for example, to connect
genetic circuits 1-7 or control flux through a metabolic pathway 8-13. We have developed a predictive
design method for synthetic ribosome binding sites that enables the rational control of a protein's
production rate on a proportional scale. Experimental validation of over 100 predictions in
Escherichia coli shows that the method is accurate to within a factor of 2.3 over a range of 100,000-
fold. The design method also correctly predicts that reusing a ribosome binding site sequence in
different genetic contexts can result in different protein expression levels. We demonstrate the
method's utility by rationally optimizing a protein's expression level to connect a genetic sensor to a
synthetic circuit. The proposed forward engineering approach will accelerate the construction and
systematic optimization of large genetic systems.
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Introduction
Microbial engineering is a time-consuming procedure that often requires multiple rounds of
trial-and-error genetic mutation. As it becomes possible to construct larger pieces of synthetic
DNA 14, including whole genomes 15, automated methods for genetic circuit assembly and
metabolic pathway optimization will be critically important. As genetic systems grow in size
and complexity, the application of a trial-and-error approach to optimizing these systems is
more difficult.

A genetic system's function is optimized by varying the sequences of its regulatory elements
to control the expression levels of its protein coding sequences. Each rate-limiting step in gene
expression offers the opportunity for rationally modulating the protein expression level. In
bacteria, ribosome binding sites (RBSs) and other regulatory RNA sequences are effective
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control elements for translation initiation 16-19. As a consequence, they are commonly mutated
to optimize genetic circuits, metabolic pathways, and the expression of recombinant proteins.

Previous studies have generated libraries of RBS sequences with the goal of optimizing the
function of a genetic system 1,7,18. Generation and selection of a sequence library can become
impractical as the number of participating proteins increases, especially if measuring the
function requires a low-throughput assay or screen 6. For example, randomly mutating 4
nucleotides of an RBS generates a library of 256 sequences. The library size increases
combinatorially with the number of proteins in the engineered system (16.7 million sequences
for 3 proteins, 2.8×1014 sequences for 6 proteins).

A biophysical model of translation initiation would aid the optimization process by enabling
the design of an RBS sequence to obtain a desired translation initiation rate. Using
thermodynamics, the free energies of key molecular interactions involved in translation
initiation have been characterized 20,21. Thermodynamic models are made possible by
measuring the sequence-dependent energetic changes during RNA folding and hybridization
22-26. These methods have enumerated and characterized the attributes of a RBS sequence
that affect its translation initiation rate, but a predictive model that combines all of the
interactions together has not been created and tested.

Bacterial translation consists of four phases: initiation, elongation, termination, and ribosome
turnover (Figure 1A) 27. In most cases, translation initiation is the rate-limiting step. The
translation initiation rate is determined by the summary effect of multiple molecular
interactions, including the hybridization of the 16S rRNA to the RBS sequence, the binding of
tRNAfMET to the start codon, the distance between the 16S rRNA binding site and the start
codon, and the presence of RNA secondary structures that occlude either the 16S rRNA binding
site or the standby site 20, 21, 28-31.

We have developed an equilibrium statistical thermodynamic model to quantify the strengths
of the molecular interactions between the 30S complex and an mRNA transcript and to predict
the resulting translation initiation rate. The thermodynamic model describes the system as
having two states separated by a reversible transition (Figure 1B). The initial state is the folded
mRNA transcript and the free 30S complex. The final state is the assembled 30S pre-initiation
complex on an mRNA transcript. The difference in Gibbs free energy between these two states
is quantified by the Gibbs free energy change ΔGtot. The ΔGtot depends on the mRNA sequence
surrounding a specified start codon and will become more negative when attractive interactions
are present and more positive when mutually exclusive secondary structures are present.

The translation initiation rate r is related to the ΔGtot according to

(1)

where β is the Boltzmann factor for the system. The derivation of Equation 1 is presented in
the Supplementary Methods. Importantly, Equation 1 describes the differences in translation
initiation rate that result from differences in mRNA sequence. The amount of expressed protein
E is proportional to the translation initiation rate where the proportionality factor K accounts
for any ribosome-mRNA molecular interactions that are independent of mRNA sequence and
any translation-independent parameters, such as the DNA copy number, the promoter's
transcription rate, the mRNA stability, and the protein dilution rate (Supplementary Figure 1).

Given a specific mRNA sequence surrounding a start codon, called the subsequence, the
ΔGtot is predicted according to the energy model:
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(2)

where the reference state is a fully unfolded subsequence with ΔGref = 0.

The ΔGmRNA:rRNA term is the energy released when the last 9 nucleotides (nt) of the E. coli
16S rRNA – 3′-AUUCCUCCA-5′ – hybridizes and co-folds to the mRNA subsequence
(ΔGmRNA:rRNA < 0). Intra-molecular folding within the mRNA is allowed. All possible
hybridizations between the mRNA and 16S rRNA are considered to find the highest affinity
16S rRNA binding site. The binding site minimizes the sum of the hybridization free energy
ΔGmRNA:rRNA and the penalty for non-optimal spacing ΔGspacing. Thus, the algorithm can
identify the 16S rRNA binding site regardless of its similarity to the consensus Shine-Dalgarno
sequence.

The ΔGstart term is the energy released when the start codon and the initiating tRNA anti-codon
loop – 3′-UAC-5′ – hybridize together. The ΔGspacing is the free energy penalty caused by a
non-optimal physical distance between the 16S rRNA binding site and the start codon
(ΔGspacing > 0). When this distance is increased or decreased from an optimum of 5 nt (or
∼17 Å) 29, the 30S complex becomes distorted, resulting in a decreased translation initiation
rate.

The ΔGmRNA is the work required to unfold the mRNA subsequence when it folds to its most
stable secondary structure, called the minimum free energy structure (ΔGmRNA < 0). The
ΔGstandby is the work required to unfold any secondary structures sequestering the standby site
(ΔGstandby < 0) after 30S complex assembly. We define the standby site as the 4 nucleotides
upstream of the 16S rRNA-binding site, which is its location in a previously studied mRNA
28.

To calculate the ΔGmRNA:rRNA, ΔGstart, ΔGmRNA, and ΔGstandby free energies, we use the
NUPACK suite of algorithms, developed by Pierce and coworkers 32, with the Mfold 3.0 RNA
energy parameters 22,23. These free energy calculations do not have any additional fitting or
training parameters and explicitly depend on the mRNA sequence. In addition, the free energy
terms are not orthogonal; changing a single nucleotide can potentially affect multiple energy
terms.

We designed a series of experiments to quantify the relationship between the aligned spacing
s and the free energy penalty ΔGspacing. Thirteen synthetic RBSs are created where the aligned
spacing is varied from 0 to 15 nucleotides while verifying that the ΔGmRNA:rRNA, ΔGmRNA,
ΔGstart, and ΔGstandby free energies remain constant (Supplementary Table I). The translation
initiation rates of RBS sequences are measured using a fluorescent protein measurement system
(Methods). Steady-state fluorescence measurements are performed on E. coli cultures over a
24 hour period. Under these conditions, the average fluorescence measurement is expected to
be proportional to the translation initiation rate r.

The quantitative relationship between the aligned spacing and ΔGspacing is obtained from the
fluorescence measurements (Methods). According to the data, it is conceptually useful to treat
the 30S complex as a model barbell connected by a rigid spring, where either stretching or
compressive forces cause a reduction in entropy and an increase in the ΔGspacing penalty. We
empirically fit these measured ΔGspacing values to either a quadratic (s > 5 nt) or a sigmoidal
function (s < 5 nt). Following this parameterization, we tested the accuracy of these equations
on an additional set of synthetic RBS sequences (Supplementary Figure 2).
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For an arbitrary mRNA transcript, the thermodynamic model (Equation 2) is evaluated for each
AUG or GUG start codon. The algorithm considers only a subsequence of the mRNA transcript,
consisting of 35 nucleotides before and after the start codon. This subsequence includes the
RBS and part of the protein coding sequence. The model predictions do not improve when
longer subsequences are considered (Supplementary Figure 3).

The development of the thermodynamic model makes certain assumptions. Contributions
related to the ribosomal S1 protein's potential preference for pyrimidine-rich sequences are
omitted from the free energy model33. The model also assumes that the reversible transition
between the initial and final state of 30S complex assembly reaches chemical equilibrium on
a physiologically relevant timescale and without any long-lived intermediate states. The
presence of overlapping or neighboring start codons, overlapping RBS and protein coding
sequences, regulatory RNA binding sites, or RNAse binding sites also pose a challenge to the
predictive accuracy of the thermodynamic model. The presence of multiple in-frame start
codons, each with significant translation initiation, may distort its predictive accuracy. A
genetic system can be designed to avoid many of these complications.

The thermodynamic model can be used in two ways. First, it can predict the relative translation
initiation rate of an existing RBS sequence for a particular protein coding sequence on an
mRNA transcript. We refer to this as “reverse engineering” because the RBS sequence already
exists. Second, it can be used in conjunction with an optimization algorithm to identify a
synthetic RBS sequence that is predicted to translate a given protein coding sequence at a user-
selected rate. We refer to this mode as “forward engineering” because it generates a de novo
sequence according to a user's specifications.

We use the thermodynamic model to predict the translation initiation rates of 28 existing RBS
sequences (Figure 2A) that were obtained from a natural genome or taken from a list of
commonly used sequences (Supplementary Table I). The lengths of these sequences, as
measured by the distance from the transcriptional start site to the fluorescent protein's start
codon, vary from 24 to 42 nucleotides. The steady-state protein fluorescences from the
sequences are then assayed in the measurement system (Methods). The growth rates of the
cell cultures did not correlate with protein fluorescence (Supplementary Figure 4). According
to the theory (Equation 1), we expect a linear relationship between the predicted ΔGtot and the
log protein fluorescence. Using linear regression, the squared correlation coefficient R2 is 0.54
with Boltzmann factor β = 0.45 ± 0.05 mol/kcal (Figure 2B). The average error is 〈|ΔΔG|〉 =
2.1 kcal/mol (Figure 2C).

While these commonly used RBS sequences vary the protein expression by 1500 fold, the
thermodynamic model predicts that both stronger and weaker RBSs are possible. For example,
one of these RBS sequences contains a strong 16S rRNA binding site (ΔGmRNA:rRNA = −15.2
kcal/mol), but did not yield a high protein expression level due to a strong mRNA secondary
structure and non-optimal spacing (ΔGmRNA = −11.4, ΔGspacing = 1.73 kcal/mol). By
optimizing the RBS sequence towards a selected ΔGtot, we gain the ability to rationally control
the translation initiation rate over a wide range with a proportional effect on the protein
expression level.

Using the thermodynamic model, we developed an optimization algorithm that automatically
designs an RBS sequence to obtain a desired relative protein expression level. The user inputs
a specific protein coding sequence and a desired translation initiation rate. The rate can be
varied over five orders of magnitude on a proportional scale. Equation 1 and the experimentally
measured β = 0.45 mol/kcal is used to convert the user-selected translation initiation rate into
the target ΔGtot. The method then generates a synthetic RBS sequence according to the desired
specifications.
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The design method combines the thermodynamic model of translation initiation with a
simulated annealing optimization algorithm to design an RBS sequence that is predicted to
have a target ΔGtot (Figure 2D). The RBS sequence is initialized as a random mRNA sequence
upstream of the protein coding sequence. The method then creates new mRNA sequences by
inserting, deleting, or replacing random nucleotides. For each new sequence, the ΔGtot is
calculated and compared to the target ΔGtot. The sequences are then accepted or rejected
according to the Metropolis criteria and three additional sequence constraints that are based
on the model's assumptions (Methods). The procedure continues until the synthetic sequence
has a predicted ΔGtot to within 0.25 kcal/mol of the target. For a given target ΔGtot, multiple
solutions are possible, creating an ensemble of degenerate RBS sequences. The
characterization of these ensembles is described in the Supplementary Discussion.

The forward design method is tested by generating 29 synthetic RBS sequences
(Supplementary Table I) and comparing their predicted ΔGtot values to the measured protein
fluorescences. The coding sequence for a red fluorescent protein is specified and the ΔGtot
target is varied from −7.1 to 16.0 kcal/mol. The design method then generates a synthetic RBS
sequence for each target ΔGtot. These RBS sequences vary in length from 16 to 35 nucleotides
and were highly dissimilar. The steady-state protein fluorescence for each sequence is
measured (Methods). The growth rates of the cell cultures did not significantly vary across
sequences (Supplementary Figure 4). As expected from the theory (Equation 1), we obtain a
linear relationship between the log protein fluorescence and the predicted ΔGtot with β = 0.45
± 0.01 (R2 = 0.84) (Figure 2E). The average error is 〈|ΔΔG|〉 = 1.82 kcal/mol, corresponding
to a 2.3-fold error in the protein expression level. The probability distribution of the ΔΔG for
a synthetic RBS is well fit by a Gaussian distribution (Figure 2F).

We next tested the ability of the design method to control the translation initiation rates of
different proteins. Two chimeric proteins are constructed that fused the first 27 nucleotides
from commonly used transcription factors to a red fluorescent protein (TetR27-RFP and
AraC27-RFP). The design method is then used to generate 23 synthetic RBSs with ΔGtot targets
ranging from −8.5 to 10.5 kcal/mol (Supplementary Table I). The thermodynamic model
correctly predicts the translation initiation rates of the TetR27-RFP (R2 = 0.54) and AraC27-
RFP (R2 = 0.95) chimeric protein coding sequences (Figure 3A). Notably, the linear
relationship between the predicted ΔGtot and the log protein fluorescence yields a similar slope
β = 0.45 ± 0.05 mol/kcal.

A common practice is to reuse the same well-characterized RBS sequence for the expression
of different proteins. Interestingly, the thermodynamic model predicts that this can yield
dramatically different translation initiation rates. This absence of modularity will occur when
the RNA sequence, containing the RBS, forms strong secondary structures with one protein
coding sequence, but not another 30.

We designed experiments to test the model's ability to predict the impact of changing the protein
coding sequence on the translation initiation rate. We use the design method to generate 14
synthetic RBS sequences; these sequences are then placed upstream of two different protein
coding sequences: the fluorescent protein (RFP) and a chimeric fluorescent protein (TF-RFP:
LacI27-RFP, TetR27-RFP, or AraC27-RFP). The optimization procedure for these synthetic
RBSs was modified to maximize the objective function |ΔGRFP − ΔGTF-RFP|, where ΔGRFP
and ΔGTF-RFP are the predicted ΔGtot's when the RBS sequence is placed upstream of either
the RFP or TF-RFP protein coding sequences, respectively. As predicted by the model, the
translation initiation rates of these synthetic RBS sequences greatly change when they are
reused with different protein coding sequences (Figure 3B); for example, replacing the
fluorescent protein with the TetR27-RFP chimera resulted in a 530-fold increase in expression
level.
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The thermodynamic model can accurately predict these differences in translation initiation rate
when the correct protein coding sequence is specified (R2 = 0.62 and 0.51, Figure 3C). When
the incorrect protein coding sequence is used, the translation initiation rate is not accurately
predicted (R2 = 0.04, 0.02). Consequently, when designing a RBS sequence, the beginning of
the protein coding sequence must be included in the thermodynamic calculations.

Altogether, 119 predictions of the design method were tested, revealing that the translation
initiation rate can be controlled over at least a 100,000-fold range. The thermodynamic model
is most accurate when all free energy terms are included in the ΔGtot calculation
(Supplementary Figure 5). By themselves, each free energy term is a poor predictor of the
translation initiation rate (Supplementary Figure 6) and excluding one free energy term from
the ΔGtot calculation results in a poorer prediction (Supplementary Figure 7). According to the
distribution of the method's error (Figure 2F), an optimized RBS sequence has a 47%
probability of expressing a protein to within 2-fold of the target. The probability increases to
72%, 85%, or 92% by generating two, three, or four optimized RBS sequences with identical
target translation initiation rates (Supplementary Discussion).

We now demonstrate how combining the design method with a quantitative model of a genetic
system enables the efficient optimization of its RBS sequences towards a targeted system
behavior. Here, our objective is to optimize the connection between the arabinose-sensing
PBAD promoter and an AND gate genetic circuit7. The AND gate genetic circuit is regulated
by the expression levels of two input promoters (PBAD and Psal) and controls the expression
level of an output gene, which is selected to be a gfp reporter (Figure 4A). The desired AND
logic requires that the output gene is only expressed when both input promoters are active. The
digital accuracy of the AND logic is highest when the maximum expression level from the
PBAD promoter is an optimal value between underexpression and overexpression. When the
promoter is underexpressed, the gfp expression is never turned on; when overexpressed,
transcriptional leakiness causes gfp expression to turn on even in the input's absence.

The quantitative model relates the RBS sequence downstream of the PBAD promoter to the
accuracy of the AND gate genetic circuit's function (Figure 4B). We use previously
characterized transfer functions7 to relate the arabinose and salicylate concentrations to the
expression levels of the PBAD and Psal promoters (I1 and I2) (Supplementary Figure 8). The
PBAD promoter has a maximum protein expression level of gref = 590 au at full induction (x =
1.3 mM arabinose) and when using an RBS sequence with a predicted ΔGtot value of ΔGref =
−1.05 kcal/mol. We then substitute I1 and I2 into the AND gate genetic circuit's transfer function
to determine the output gene's expression level, which is in turn substituted into the fitness
function F that quantifies the ability of the genetic system to carry out AND logic
(Supplementary Methods).

We can interconvert between the maximum protein expression level of the PBAD promoter and
the predicted ΔGtot of its RBS sequence according to the equation,

(3)

where g is called the gain. The experimentally measured β = 0.45 mol/kcal is utilized.
Consequently, we create a quantitative curve F(ΔGtot) that relates the predicted ΔGtot of the
PBAD promoter's RBS sequence to the fitness of the genetic system. The fitness curve identifies
an optimal region at ΔGtot = −1.17 ± 2 kcal/mol where the genetic system will exhibit the best
AND logic with respect to the PBAD promoter's RBS sequence (Figure 4B).
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Using the forward engineering mode of the design method, we then generate 2 synthetic RBS
sequences targeted to the optimum region of the genetic system's function (predicted ΔGtot =
−1.48 and −1.15 kcal/mol). We also design 7 additional synthetic RBSs to test the accuracy of
the F(ΔGtot) fitness curve, where the ΔGtot ranged from 0.60 to 17.2 kcal/mol. Each RBS
sequence (32 to 35 nt) is inserted downstream of the PBAD promoter and the resulting genetic
circuit's response to varying inducer concentrations is assayed (Figure 4C and Methods). The
fitness values of these rationally mutagenized genetic systems are then compared to the
predictions of the model and design method (Figure 4B). The insertion of two stronger RBS
sequences (ΔGtot = −2.5 and −3.0 kcal/mol) cause the genetic system to exhibit a fatal growth
defect.

Both optimally designed synthetic RBS sequences result in a successful connection between
the arabinose-sensing PBAD promoter and the AND gate genetic circuit (mean fitness > 0.85,
Figure 4B). The experimentally determined optimum in the F(ΔGtot) curve is nearby ΔGtot =
0.60 kcal/mol, which is only a 1.8 kcal/mol deviation from the model's prediction. The
quantitative model and design method also correctly predict how the fitness of the genetic
system deteriorates with an increasing ΔGtot. Thus, our approach enabled us to rationally
connect two synthetic genetic circuits together to obtain a target behavior while performing
only a few mutations and assays (additional design calculations are located in the
Supplementary Discussion).

A central goal of synthetic biology is to program cells to carry out valuable functions. As we
construct larger and more complicated genetic systems, models and optimization techniques
will be required to efficiently combine genetic parts to achieve a target behavior. To accomplish
this, biophysical models that link the DNA sequence of a part to its function will be necessary.
As engineered genetic systems scale to the size of genomes, the integration of multiple design
methods will enable the design of synthetic genomes on a computer to control cellular behavior.

Materials and Methods
Software Implementation

A software implementation of the design method has been named the RBS Calculator and is
available at http://voigtlab.ucsf.edu/software. Visitors may use the RBS Calculator in two
ways: first, to predict the translation initiation rate of each start codon on an mRNA sequence
(reverse engineering); second, to optimize the sequence of a ribosome binding site to rationally
control the translation initiation rate with a proportional effect on the protein expression level
(forward engineering). The translation initiation rate is gauged on a proportional scale with a
suggested range of 0.1 to 100000, although a larger range is potentially feasible. In reverse
engineering mode, the software will warn visitors when ribosome binding sites fail to satisfy
the sequence constraints or contain additional sequence complications.

A thermodynamic model of translation initiation
The mRNA subsequence S1 consists of the max(1, nstart − 35) to nstart nucleotides and the
subsequence S2 consists of the max(1, nstart − 35) to nstart + 35 nucleotides, where nstart is the
position of a start codon. The ΔGstart is −1.19 and −0.075 kcal/mol for AUG and GUG start
codons, respectively 22.

Using the NuPACK ‘subopt’ algorithm 32 with Mfold 3.0 parameters at 37°C 22,23, base pair
configurations of the folded 16S rRNA and sequence S1 are enumerated, starting with the
minimum free energy (mfe) configuration and continuing with suboptimal configurations, each
with a corresponding ΔGmRNA:rRNA. For each configuration, the aligned spacing between the
16S rRNA binding site and start codon is calculated according to s = nstart − n1 − n2, where
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n1 and n2 are the rRNA and mRNA nucleotide positions in the farthest 3′ base pair in the 16S
rRNA binding site. When the 30S complex is stretched (s > 5 nt), the ΔGspacing is calculated
according to the quadratic equation,

(4)

where sopt = 5 nt, c1 = 0.048 kcal/mol/nt2, and c2 = 0.24 kcal/mol/nt. When the 30S complex
is compressed (s < 5 nt), the ΔGspacing is calculated according to the sigmoidal function,

(5)

where c1 = 12.2 kcal/mol and c2 = 2.5 nt −1. The above parameter values are determined by
minimizing the difference between the ΔGspacing values calculated from the experimental
measurements (Supplementary Figure 2) and the evaluation of Equation 4 or 5. For each
configuration, the ΔGspacing is added to the ΔGmRNA:rRNA. The configuration in the list with
the lowest free energy is then identified as containing the predicted 16S rRNA binding site
with a corresponding ΔGmRNA:rRNA. The protein coding sequence is excluded from S1 because
ribosome binding excludes the formation of downstream secondary structures.

Using the NuPACK ‘mfe’ algorithm and Mfold parameters, the mfe configuration of sequence
S2 is calculated and its free energy is designated ΔGmRNA. The standby site is the 4 nt region
upstream of the 16S rRNA binding site. The energy required to unfold the standby site is
determining by calculating the mfe of sequence S2 with and without preventing the standby
site from forming base pairs. The difference between these mfe's is designated ΔGstandby. To
calculate the mfe of sequence S2 with a standby site that is constrained to be single-stranded,
the sequence is first split into two subsequences, their mfes are each calculated, and then
summed together. The two subsequences are the nucleotides nstart − 35 to n3 − 4 and n3 to
nstart + 35, where n3 is the most 5′ base pair in the 16S rRNA binding site and 4 is the standby
site length.

The five energy terms are summed together to calculate the ΔGtot. Notably, selecting an
alternate reference energy state simply adds a sequence-independent constant to the predicted
ΔGtot, which becomes indistinguishable from the proportionality factor K.

The simulated annealing optimization algorithm
An initial RBS sequence is randomly generated and inserted in between a pre-sequence and
protein coding sequence to create a sequence S. The ΔGtot of the sequence S is calculated and
the objective function Oold = |ΔGtot − ΔGtarget| is evaluated. In an iterative procedure, the
simulated annealing optimization algorithm randomly deletes, inserts, or replaces a nucleotide
in the RBS sequence. The ΔGtot and objective function Onew are then recalculated. If the
ΔGtot calculation of S invalidates the sequence constraints, then the mutation is immediately
rejected. Otherwise, the mutation is accepted with probability max(1, exp([Oold − Onew]/
TSA)), where TSA is the simulated annealing temperature. The TSA is continually adjusted to
maintain a 5% to 20% acceptance rate.

There are three sequence constraints that prevent the optimization algorithm from generating
a synthetic RBS sequence that may invalidate one of the thermodynamic model's assumptions.
The first constraint calculates the energy required to unfold the 16S rRNA binding site on the
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mRNA sequence and rejects the ones that require more than 6 kcal/mol to unfold. The second
constraint quantifies the presence of long-range nucleotide interactions. According to a growth
model for random RNA sequences 34, the equilibrium probability of nucleotides i and j forming
a base pair in solution is proportional to p = |i − j|−1.44. For each base pair in sequence S, we
calculate p. If the minimum p is less than 6×10-3 then the sequence is rejected. Finally, the
creation of new AUG or GUG start codons within the RBS sequence is disallowed.

Strains, media, and plasmid construction
The Luria-Bertani (LB) media (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl) is obtained
from Fisher Scientific (Pittsburgh, PA). The supplemented minimal media contains M9
minimal salts (6.8 g/L Na2PO4, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 g/L NH4Cl) from Sigma, 2
mM MgSO4 (Fischer Scientific), 100 μM CaCl2 (Fischer Scientific), 0.4% glucose (Sigma),
0.05 g/L leucine (Acros Organics, Belgium), 5 μg/mL chloramphenicol (Acros Organics), and
an adjusted pH of 7.4. The expression system is a ColE1 vector with chloramphenicol resistance
(derived from pProTet, Clontech). The expression cassette contains a σ70 constitutive promoter
(BioBrick J23100), the RBS sequence, followed by the mRFP1 fluorescent protein reporter.
XbaI and SacI restriction sites are located before the RBS and after the start codon. An RBS
with a desired sequence is inserted into the expression vector using standard cloning techniques.
Pairs of complementary oligonucleotides are designed with XbaI and SacI overhangs and the
vector is digested with XbaI and SacI restriction enzymes (NEB, Ipswich, MA). Ligation of
the annealed oligonucleotides with cut vector results in a nicked plasmid, which is transformed
into E. coli DH10B cells. Sequencing is used to verify a correct clone.

The AND gate genetic circuit is composed of three plasmids: pBACr-AraT7940, pBR939b,
and pAC-SalSer914 with kanamycin, ampicillin, and chloramphenicol resistance markers,
respectively. The PBAD promoter maximum expression level was modified by inserting
designed synthetic RBSs on plasmid pBACr-AraT7940. Plasmid pBACr-AraT7940 was
digested with BamHI and ApaLI enzymes and pairs of oligonucleotides were designed to
contain the desired RBS sequence and corresponding overhangs. Ligation, transformation,
selection, and sequencing proceeded as described above.

Growth and fluorescence measurements
The fluorescent protein measurement system is composed of a constitutive promoter, a
sequence containing a RBS, and the mRFP1 fluorescent protein reporter (Supplementary
Figure 9). An annotated DNA sequence of the system (Genbank format) is available in the
Supplementary Data.

Growth and fluorescence measurements are performed in 96-well high throughput format. A
96-well plate containing 200 μl LB and 50 μg/ml chloramphenicol is inoculated, from single
colonies, with up to 30 different DH10B E. coli cultures in an alternating, staggered pattern
that excludes the outer wells. Cultures are incubated overnight at 37°C with 250 RPM orbital
shaking. A fresh 96-well plate containing 200μl supplemented minimal media is inoculated by
overnight cultures using a 1:100 dilution. This plate is then incubated at 37°C in a Safire2 plate
spectrophotometer (Tecan) with high orbital shaking. OD600 measurements are recorded every
3 minutes. Once a culture reaches an OD600 of 0.15 to 0.20 (4 to 6 hours), a sample of each
culture is transferred to a new plate containing 200 μl PBS and 2 mg/ml kanamycin (Acros
Organics) for flow cytometry measurements. This media replacement strategy is repeated twice
more using fresh, pre-warmed plates containing supplementary minimal media (the first with
a 1:10 dilution requiring 8 to 10 hours of growth and the second with a 1:7 dilution requiring
13 to 15 hours of growth). At least three samples are taken for each culture. The fluorescence
distribution of each sample is measured with a LSRII flow cytometer (BD Biosciences). We
use an ellipse in forward and side scatter space to gate at least 30 000 flow cytometer events.
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All distributions are unimodal. The autofluorescence distribution of DH10B cells is also
measured. The arithmetic mean of each distribution is taken and the mean autofluorescence is
substracted.

From single colonies, RBS variants of each AND gate genetic circuit are grown overnight in
LB and antibiotics (50 μg/ml ampicillin, 25 μg/ml chloramphenicol, and 25 μg/ml kanamycin).
A 96-well plate containing 200 μl LB, antibiotics, and sixteen different inducer concentrations
(combinations of 0.0, 1.3×10-3, 8.3×10-2, and 1.3 mM arabinose with 0.0, 6.1×10-4,
3.9×10-2, and 0.62 mM sodium salicylate) are inoculated by overnight cultures using a 1:100
dilution. Plates are grown in a Safire2 plate spectrophotometer (Tecan) with high orbital
shaking. OD600 and gfp fluorescence measurements are recorded every 10 minutes for 14 hours.
Background autofluorescence is subtracted from each fluorescence measurement. This
procedure is repeated twice for each variant. For each variant, the average and standard
deviation of the fluorescence per OD600 for each inducer concentration at the final time point
are then calculated.

Data analysis
The ΔGspacing is inferred from the fluorescent protein expression data E in the following way.
The RNA sequences used to parameterize the model of ΔGspacing are predicted to have identical
ΔGmRNA, ΔGmRNA:rRNA, ΔGstandby, and ΔGstart free energies. According to Equation 1,
dividing the expression of a sequence with spacing s1 over another with spacing s2 and
rearranging then yields the relation: ΔGspacing(s1) − ΔGspacing(s2) = −β−1log(E1/E2). The
fluorescent protein expression at s = 5 nt was considered maximal and ΔGspacing(s = 5) is
accordingly set to zero. Using an experimentally measured value of β = 0.45 mol/kcal, the
model of ΔGspacing for each s is then determined.

Linear regression is used to determine the accuracy of the theory, which hypothesizes a linear
relationship between the log average protein fluorescence E and the predicted ΔGtot data. The
squared correlation coefficient R2 and slope −β are calculated according to −β = (NΣ(xiyi) −
ΣxiΣyi) / (NΣ(xi

2) − (Σxi)2) and R2 = (NΣ(xiyi) − ΣxiΣyi)2 / [(NΣ(xi
2) − (Σxi)2)(NΣ(yi

2) −
(Σyi)2)], where N is the number of average expression levels recorded, y is log E, and x is
ΔGtot. The standard deviation of β is calculated by substituting the log E data with the log(E
+δE) and log(E−δE) data (δE : standard deviation of E) and calculating the average difference.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A thermodynamic model of bacterial translation initiation. (A) The ribosome translates an
mRNA transcript and produces a protein in a four step process: the rate-limiting assembly of
the 30S pre-initiation complex, translation initiation, translation elongation, translation
termination, and the turnover of ribosomal subunits and other factors. (B) The thermodynamic
free energy change during the translation initiation step is determined by five molecular
interactions that participate in the initial and final states of the system. See text for a description
of each free energy term. The Watson-Crick base pairs and G:U wobbles (red lines) are shown.
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Figure 2.
The design method has two modes of operation: (A) The method can predict the relative
translation initiation rate of an existing RBS when placed in front of a protein coding sequence.
The method calculates the ΔGtot from the input sequence. According to Equation 1, a linear
relationship between the log protein fluorescence and the predicted ΔGtot is expected. (B) The
fluorescence levels from 28 natural or existing RBSs in front of the RFP fluorescent protein
are measured (circles) and compared to the predicted ΔGtot calculations. The error bars are
calculated as the standard deviation of 6 measurements performed on two different days. The
expected relationship is obtained (line, R2 = 0.54) with a slope β = 0.45 ± 0.05. (C) A histogram
shows the distribution of error in the predicted ΔGtot, denoted by |ΔΔG|, of the sequences in
B. The average of this distribution is 2.11 kcal/mol. (D) An optimization algorithm with
Metropolis criteria, the sequence constraints, and simulated annealing uses iterations of
mutation and selection to identify an RNA sequence that is predicted to have the target
ΔGtot. (E) The fluorescence levels from 29 synthetic RBSs in front of RFP are measured
(circles) and compared to the predicted ΔGtot calculations. The error bars are calculated as the
standard deviation of at least 5 measurements performed on 2 different days. The expected
linear relationship between log protein expression level and predicted ΔGtot is shown (line,
R2 = 0.84) with slope β = 0.45 ± 0.01. (F) A histogram shows the distribution of the error, |
ΔΔG|. The average of the distribution is 1.82 kcal/mol and fits well to a one-sided Gaussian
distribution (red line) with standard deviation σ = 2.44 kcal/mol.
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Figure 3.
The design method can control the expression level of different proteins by predicting the
impact of changing the protein coding sequence. (A) The fluorescence levels from 23 synthetic
RBSs in front of two different protein coding sequences are measured and compared to the
predicted ΔGtot calculations. The two proteins are TetR27-RFP (diamonds) and AraC27-RFP
(squares). The expected relationship between the log protein fluorescence and the predicted
ΔGtot is obtained for each protein coding sequence (TetR27-RFP, R2=0.54; AraC27-RFP, R2

= 0.95). (B) Reusing the same RBS sequence with two different protein coding sequences can
alter the translation initiation. Fluorescence levels from identical RBS sequences in front of
either RFP (white bars) or a chimeric fluorescent protein (either LacI27-RFP, TetR27-RFP, or
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AraC27-RFP; black bars) are shown. (C) The design method must use the correct protein coding
sequence to accurately predict the ΔGtot. The fluorescence levels from 14 pairs of RBS
sequences in front of either RFP (black circles) or a chimeric fluorescent protein (LacI27-RFP,
triangles; TetR27-RFP, diamonds; AraC27-RFP, squares) are measured. When the correct
protein coding sequence is used to calculate the ΔGtot, the expected relationship between log
protein fluorescence and ΔGtot is obtained (lines, R2 = 0.62 and R2 = 0.51). Otherwise, the
thermodynamic model does not correctly predict the expression level (R2 = 0.04 and 0.02).
The error bars calculated as the standard deviation of at least 6 measurements performed on 2
different days.
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Figure 4.
Optimal connection of a sensor input to an AND gate genetic circuit. (A) A functional AND
gate genetic circuit will only turn on the gfp reporter output when both the PBAD and Psal
promoter inputs are sufficiently induced by arabinose and salicylate, respectively. (B) The
quantitative model and design method predict a fitness curve F(ΔGtot) (blue line), relating the
predicted ΔGtot of the PBAD promoter's RBS sequence to the quality of the genetic circuit's
AND logic. The accuracy of this curve is tested by assaying the fitness of nine genetic circuit
variants, each containing a synthetic RBS that was designed to possess a selected ΔGtot (black
circles). (C) The amount of gfp fluorescence is shown in response to combinations of arabinose
(0.0, 1.3×10-3, 8.3×10-2, and 1.3 mM) and salicylate (0.0, 6.1×10-4, 3.9×10-2, and 0.62 mM)
for selected AND gate genetic circuits. These genetic circuits contain RBS sequences with
predicted ΔGtot's of 12.3, 2.18, 0.60, and −1.48 kcal/mol. The error bars calculated as the
standard deviation of 2 measurements of fitness performed on 2 different days.
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