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Abstract: We present a randomized DNA algorithm for the 3-SAT problem based on the probabilistic algorithm
proposed by Schöning. The basic idea of our algorithm is that the read of information is performed in linear DNA
molecules, while the rewrite information is implemented in plasmid DNAs. Compared with previous works, our
algorithm performs the flip of a variable’s value more easily and reliably, and the time complexity is also reduced
to O(mn), where m is the number of clauses and n is the number of variables. Moreover, Schöning’s algorithm has
been further improved recently for the case of 3-SAT by Hofmeister. We also demonstrate how to adapt this
improvement in our new algorithm and the space complexity of our algorithm is then reduced to O[(4/3)n-3m’

(7/3)m’], where m’ is the number of the maximal independent clauses. Up to now, this is the most volume-efficient
algorithm for the 3-SAT based on DNA computing.
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1. INTRODUCTION

Due to its massive parallelism and high information
density, DNA computing has become a new computational
paradigm that bridges between computer science and
biochemistry. Since Lipton [1] demonstrated the Satisfi-
ability problem could be solved by DNA computing, some
other algorithms [2-5] have been proposed for this problem
and up to now it has become a benchmark for testing the
performance of DNA computing. Apart from the various
errors in biochemical reactions, one of the major obstacles
for DNA computing is how to cope with the “exponential
curse” and reduce the size of the search space. One possible
direction is to find algorithms with more efficiency. Ogihara
[6] was the first to demonstrate how to implement the
algorithm proposed by Monien and Speckenmyer through
DNA computing; the space and time complexity of this
algorithm is then becomes O(20.6942n)and O(n·max{m2,n})
respectively. Chen et al. [7] presented a randomized DNA
algorithm, based on the classical algori-thm proposed by
Paturi for the k – SAT problem, where the space complexity
and time complexity is and O(k2mn) respectively. At present,
the most volume efficient algorithm for the 3-SAT is the
work presented by Diaz et al. [8], where they showed how to
implement the random-walk strategy proposed by Schöning
with DNA molecules. The space and time complexity of the
algorithm then becomes O((4/3n) and O(mn2) respectively [9].
The key step of Schöning’s method is to select a literal and
flip its value. In order to implement this strategy, Diaz
introduced a time stamp strategy to denote the state of the
current assignments. The two states, “new” and “old”,
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respectively indicate whether an assignment has been updated
or not. For each strand representing the specific assignment,
its update is realized by adding one copy of its elements at
the 3’ end except the literal will be flipped. This makes the
algorithm too laborious and error-prone because the length of
these strands has been doubled in the update processing.

In this paper, we present a new method to implement
Schöning’s idea. More precisely, the read of information is
performed in linear DNA molecules, while its rewrite is
finished in plasmids DNA. This makes the flip of a
variable’s value very easily, and the time complexity is also
reduced to O(mn). Additionally, Schöning’s algorithm has
been improved recently by Hofmeister [10], and we also
demonstrate how this improvement could be adapted within
the context of our new algorithm.

2. BACKGROUND

2.1. The Satisfiability Problem

Given n Boolean variables x1, x2, L, xn, an assignment to
those variables is a vector v = (v1, v2, L vn) ∈ {0,1}n.A clause
Ci of length k is a disjunction of k literals, Ci = lil ν  li2 ν  L
ν  lik, where a literal is either a variable xi or its negation ¬xi

(1 ≤ i ≤ n). For some constant k, the k-SAT problem asks if
there is a satisfying assignment that makes a formula F = C1

∧ C2 ∧ L ∧ Cm true. Obviously, there are 2n possible
satisfying assignments for this problem. It has been proven
that the k-SAT problem is NP-complete for any k ≥ 3 .
Throughout this paper, n will denote the number of variables
and m will denote the number of clauses in formula F. And
in this paper we are concerned with the 3-SAT in which each
clause consists of just 3 literals.
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2.2. Schöning’s Algorithm [8]

In order to keep this paper self-contained, we briefly
review Schöning’s random-walk strategy for the 3-SAT
problem. It mainly consists of two phases: first, an initial
assignment is chosen independently of the clauses; then,
pick a literal uniformly at random from one of the clauses
that are not satisfied by the current assignment and flip its
value. Schöning has proven that a satisfying assignment a*

can always be found with a probability high enough by this
strategy at most 3n times to (4 / 3)n initial assignments. It
can be formulated as:

Program Search (input: a 3-SAT formula F with n
variables)

For I =1 to (4 / 3)n

Select an initial assignment a uniformly at random from
{0,1}n;

For J =1 to 3n

If F (a) = 1 then accept and halt;

Select a clause C that is not satisfied by a at random;

Select a literal in C uniformly at random and flip its
value in a;

End For J

End For I

Because of the massive parallelism inherent in DNA
computing, it has the power to treat (4 / 3)n initial assign-
ments simultaneously.  Thus we can modify Schöning’s algo-
rithm based on DNA computing as follows [9]:

Step 1: Construct (4 / 3)n distinct initial assignments for
formula F.

Step 2: Detect if there exists any satisfying assignment
in the current solution pool. If so, output “YES” and stop.
Otherwise, for each assignment a, randomly select a
clause that is not satisfied by it and flip one of its three
literals’ value randomly.

Step 3: Repeat step 2 at most 3n times.

2.3. Plasmids [11, 13]

In nature, DNA molecules occur mainly in two forms:
linear and circular. The genome of bacteria is usually a

circular, double stranded DNA molecule consisting of a few
million base pairs. In addition, there exist some extra-
chromosomal genetic elements named as plasmids in a
variety of species. Plasmids encode information in their
sequences to provide for the replication and transcription of
their genetic information into RNA within the bacterium in
which they occur. Naturally occurring plasmids have been
modified to make them more useful as cloning vectors,
features including keep a relatively small size, replicating in
a relaxed fashion, having selectable markers and containing
more unique restriction sites. The position between two
adjacent restriction sites is called station, in which
interesting sequences can be inserted. Therefore, they can be
used to represent information, such as binary variables or
vertices of a graph, in DNA computing. Fig. 1 shows a
sketch of the kind of plasmids used in this paper.

Because the insertion of a sequence into a plasmid is
critical to our algorithm, as an example, we give a simple
description of this process for station S4 (see Fig. 2).
Assuming that the plasmids are in an appropriate buffer,
first, add restriction enzyme Sal I to cut the plasmids in the
corresponding place; second, add restriction enzyme Xba I to

Fig. (2). This figure shows how to insert a sequence “-NNNNN-” into the station S4 of plasmid pUC119. Before insertion, this sequence
must be preprocessed so that it carries the sticky ends at both sides, and which will anneal with that of the plasmids.

Fig. (1). This figure shows a sketch of the plasmid pUC19. The
blank denotes the restriction site recognized by the enzyme
beside it, and the black denotes the station. The shadow in
station S7 denotes that the recognition sites of the two enzymes
are somewhat overlapped, and therefore we can just select one of
them to use.



A Random Walk DNA Algorithm for the 3- SAT Problem Current Nanoscience, 2005, Vol. 1, No. 1    87

cut the plasmids in the next recognition site and the segment
between the two sites will drop off from the original
plasmids; third, clear the dropped sequence by gel
electrophoresis, and add the desired sequence which has been
preprocessed with the same enzymes as previous steps to the
buffer; finally the two pairs of sticky ends will form
temporary hydrogen bonds and the ligases will paste the
covalent bonds between the inserted sequence and the
plasmid to form a circular.

In this paper, we assume that the plasmids are
constructed to have similar structure of plasmids pUC19.
Therefore they can be denoted as

The subsegments So, S l, L, S n, S n+l denote stations,
while the subsegments Eo, E1, L ,En+2 are recognition sites
of enzymes REo, REl, L , RE n+2 .

3. IMPLEMENTATION OF THE ALGORITHM

3.1. Encoding Scheme

Let F = Cl ν  C2 ∧ L ∧ Cm be a 3-SAT formula with n
variables x1, x 2 ,  L ,xn. Our algorithm requires 2n + 2well-
behaved sequences of DNA. As the encoding problem is an
important issue in DNA computing that needs further
studies, we shall not give the detailed encodings for them.
Here we assume these sequences are designed to have enough
difference and stability so that they could be easily
distinguished in the computing process.

1. A head sequence h with a fixed length, say 20bp.

2. A tail sequence s with fixed length, say 20bp.

3. n“true” sequences   with fixed length, say 20bp,
representing “ xi = true” .

4. n“false” sequences   with fixed length, say 12bp,
representing “xi = false”.

3.2. Operations

The operations used in this paper are:

1. Denature: break apart a double-stranded DNA into
single-stranded complementary components in tube t

2. Double Strand: make each of the single strands in tube
t double stranded.

3. Extract: extract from tube t all single strands
containing certain particular subsequence.

4. Pour: partition the content of tube t into k test tubes
from u1to uk according the requirements, and tube t then
remains empty.

5. Combine: merge the content of tube ul to uk into a
single tube t.

6. Insert: place certain particular segment into a station of
plasmids (as described in section 2.3).

7. Cut: digest plasmids or double stranded DNA
molecules with a restriction enzyme.

8. Synthesize: chemically synthesize DNA strands
according its encoding.

9. Length: distinguish DNA strands according to their
length by gel electrophoresis.

10. Detect: check whether a test tube contains a DNA
strand or not.

All these operations are well-studied bio-techniques in
genetic engineering [11] and great improvement has been
achieved both on their performance both in the speed or
accuracy aspect.

3.3. Initial Solution Pool

1. Synthesize sequences                       and En+l sEn+2 in
different test tubes, and make them double stranded
(Concerning the number of the restriction enzymes, we will
give a short discussion in the conclusion section). Digest
each of them with the first enzyme and then the second
sequentially, finally these sequences will become double
stranded DNA with particularly sticky ends.

2. Construct the initial test tube to with (4 / 3)n copies of
plasmids.

3. Insert sequence EohEl into station So in tube to by
enzymes REo and REl.

4. Insert sequence E n+1 sE n+2 into station S n+l in tube to

by enzymes RE n+1 and RE n+2.

5. For each i (l ≤ I ≤ n), pour the content of to equally
into tubes t1 and t2.  Then insert  sequence            into
station Si in tube tl by enzymes RE n+1 and RE n+2. Insert
sequence           into station Si in tube t2 by the same
enzymes. Finally combine the content of tube t1 and tube t2

into tube to.

At this time, tube to consists of (4 / 3)n plasmids, which
represent the initial assignments with the following form

It should be mentioned that the length of these segments

ranges from 40 + 12n +          to 40 + 20n +       ,  where

|Ei| denotes the length of the restriction site Ei.

3.4. Random Walk (this step needs to perform 3n times
at most)

1. Digest the plasmids in tube to with enzyme REo

completely, and then digest them with enzyme RE n+2. After
that the segments representing the initial assignments will
drop off from the original plasmids, and we can separate
them from the rest of the plasmids by gel electrophoresis.
Keep these segments in tube tl and the rest of the plasmids
in tube to. Denature the content in tube tl and extract the
single strands containing subsequence  and  , which
representing the complementary of subsequences h and s,
finally just keep those single strands in tube tl.

2. Generate a permutation p of integers from 1 to m
randomly.

3. For each clause C p( j ) = l p( j )1 ∨ l p( j )2 ∨ lp( j )3 j ( l ≤ j
≤ m ), extract from tube t1 those single strands that fail to
satisfy the first literal l p( j )1 and put them in tube t2, then

E 0 hE l , E i x i E i+l
T

E i x i  E i+l
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extract from tube t2 those fail to satisfy the second literal lp(j)2

and put them in tube t3, finally extract from tube t3 those fail
to satisfy the third literal l p( j ) 3 and put them in tube d j. At
this time tube d j contains those single strands that fail to
satisfy clause C  p( j ) . Combine the content of tube t2and t3

into tube t1 for the next clause.

4. As the last clause C p( m ) . has been investigated, then
detect if there is any strand remaining in tube t1, if so, the
formula F is satisfied and stop; otherwise, continue the
following steps.

5. For each tube d j (l ≤ j ≤ m), perform the length
operation to separate these single strands according to their
length and regroup them into three test tubes d j1, d j2 and d

j3 randomly. In order to restore these segments into
plasmids, first, we make the strands in the 3m tubes double
stranded, then add suitable DNA adapters so that they can
anneal with the sticky end of strands in tube to to form the
circulated plasmids. (Concerning the DNA adapters, it is
somewhat complicated and readers are recommended to refer
[13]).

6. This step will flip a literal’s value. For each tube d ji

(l ≤ j ≤ m, l ≤ i ≤ 3):

(a) Add the double stranded DNA in tube d ji to tube to,
then some of the plasmids will restore to circular form while
others still remain to be linear.

(b) Separate those circulated plasmids from the linear by
gel electrophoresis, and keep the former in tube d ji and the
latter in tube to.

(c) In tube d ji, insert the segments representing the
negative of literal l p( j ) i into station S p( j ) i

Finally, combine the content of those 3m tubes (dl  l,L,dm3)
into tube to, which represents the refreshed solution pool.

4. ANALYSIS OF THE ALGORITHM

To implement Schöning’s algorithm with DNA
computing, it is important to keep randomly select a literal
that intend to will be flipped. In our algorithm, this is
accomplished through two strategies: First, the clauses are
selected randomly. A specific assignment a may fail to
satisfy several clauses at the same time, thus the selection of
a clause has a great influence on which literal is selected to
flip. Second, the positive and negative literals of variable xi

are encoded with different length, 20bp and 12bp. Thus the
diversity in length allows us to allocate those fail to satisfy
the same clause into three tubes, and just select one literal to
be flipped in each tube.

Now we give a simple analysis of the running time by
the number of sequential operations. The construction of
initial solution pool, each variable xi needs one pour
operation, two cut operations, two insert operations and one
combine operation. In addition, the head sequence h and the
tail sequence s need two cut operations and two insert
operations. The total operations of this process are 6n+4, and
its time complexity is O(n).

Concerning the random walk process, first, to make these
initial assignments become single strands, we have to

perform a cut operation, a denature operation and two extract
operations. Next, to decide which literal will be flipped, we
have to perform three extract operations and one length
operation for each clause C j (l ≤ j ≤ m). As all clauses have
been investigated, a detect operation is needed to check if
there exists a satisfying assignment. And then, to flip the
value of the selected literals, we have to perform one double
strand operation, one length operation, two insert operations
and one cut operation for each of the 3m test tubes. In the
end, one combine operation is performed to collect these
refreshed assignments into tube to. Therefore, each cycle of
the random walk takes at most 19m+ 6 operations. Since the
random walk is performed at most 3n times in our
algorithm, then the total operations is at most 3n(19m + 6).
Therefore the time complexity of our algorithm becomes
O(mn).

5. IMPROVEMENT OF THE ABOVE ALGORITHM

In Schöning’s original algorithm, the initial assignment
is selected randomly without considering the information
hidden in the clauses. Each variable is set to 0 or 1 with
equal probability. Hofmeister [10] proposed to make some
improvement in the generation of the initial assignment. His
idea comes from the observation that if there is a clause C =
xi ∨ xj ∨ xk, then the three variables should not be set to 0
simultaneously in a satisfying assignment a*. In order to use
this information, he introduced a concept of the independent
clause set. Two clauses Ci and Cj are independent if they
share no common variables. A maximal independent clause
set F ’ is a subset of clauses in F such that all clauses in F ’
are independent and every other clause in F shares some
variables with some clause of F ’. Assume that m’ is the
number of clauses in F ’, and those independent clauses are
denoted as Cl,L ,Cm’. By renaming variables and exchanging
the role of xi and   if necessary, we can assume that variables
x1, x2,L,x3m’ are those contained in the independent clauses,
and x3m’+1,L, xn are the remaining variables. In addition, all
clauses in F’ have the positive form

C1 = x1 ν  x 2 ν  x 3

C2 = x4 ν  x 5 ν  x 6

              …

Cm’ = x3 m’-2 ν  x 3m’-1 ν  x 3m’

Based on this observation, Hofmeister proposed the
following strategy to assign values for the 3m’ variables in
the independent clause set F ’.

Program Assign (p1,p2 ,p3)

% pi are the probabilities with 3p1+3p2 +3p3 = 1 for Ci =
x3m’-2 ν  x3m’-1 ν  x3m’ (l ≤ i ≤ m’).

For I =1 to m’

Set values for the three variables in Ci such that for each
c = (x3i-2, x3i-1, x3i) the following holds:
 Pr {c = (0,0,1) }= Pr {c = (0,1,0) }= Pr {c = (1,1,0) }= pl;
Pr {c = (0,1,1) }= Pr {c = (1,0,1) }= Pr {c = (1,1,0) }= p2;
Pr {c = (1,1,1) }= p3;

End For I

xi
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Hofmeister has proved that the time complexity of
Schöning’s algorithm can be reduced from (4/ 3)n to (4 / 3)n-

3m’ (7 / 3)m’ ( l ≤ m’ ≤ n / 3) asp1,p2 and p3 are assigned to
4/21, 2 / 21 and 3/ 21. Obviously, this improvement
depends on the value of m’, which is at most n / 3 for the 3-
SAT problem. In order to incorporate this idea to our new
algorithm, we only need to make some modifications to
assign the first 3m’variables:

(a) Pour the contents of to into tubes t10 and t11 according
to the fractions indicated in Fig. 3. Insert sequence
                 (l ≤ i ≤ m’) in station S3i-2 in tube t10 and
                 in that of tubet11.

(b) Pour the contents of tube t10 into tubes t20 and t21, and
that of tube t11 into tubes t22and t23 according to the fractions
indicated in Fig. 3. Insert sequences                 in station
S3i-1 in tubes t20and t22, while insert sequences               in
that of tubes t21 andt23.

(c) Pour the content of tube t20 into tube t30, the content
of tube t21 into tubes t31and t32, the content of tube t22 into
tubes t33and t34, and that of tube t23 into tubes t35 and t36

according to the fractions indicated in Fig. 2. Insert
sequences             in station S3i in tubes t31, t33 and t35,
while insert sequences                 in that of tubes t30, t32, t34

and t36.

(d) Finally combine the content of tubes from t30 to
t36into tube t0.

Obviously, we need to perform 7 pour operations, 13
insert operations, 13 cut operations and one combine
operation to assign values for the variables in one
independent clause. It sums up to 34m’ for the first
3m’variables while 6(n − 3m’) + 4 operations are needed for
the rest. Then adopting Hofmeister’s strategy in the
construction process makes the number of operations increase
from 6n + 4 to 6n + 4 +16m’, which is at most 12n +  4
given. l ≤ m’ ≤ n / 3 Thus the time complexity of this
process still keeps O(n).

CONCLUSION

In this paper, we present a new method to implement
Schöning’s random-walk strategy for the 3-SAT problem

based on DNA computing. This strategy is very simple and
just includes two steps: select a literal and flip its value. Our
idea is that the selection of a literal is accomplished in linear
DNA molecules, and the flip of its value is performed in
plasmid DNA. As the circular form of plasmids makes it
more suitable to remove or insert a segment of DNA
(corresponding to the flip operation) than linear DNA
molecules, our algorithm takes less time than that proposed
in [9]. Furthermore, the performance of flip process is more
reliable. In addition, we also show how to incorporate
Hofmeister’s idea into our algorithm.

However, the main drawback of our algorithm is that
there are so many enzymes involved in the computation
process. First, the instance of the problem is limited by the
number of enzymes that can be used without confliction; the
other is how to maintain a high efficiency of the enzymes as
they act in the same buffer. In order to overcome this
disadvantage, a specifically designed protein nucleic acid
(PNA) may be a promising technique, which can suppress
restriction of particular restriction sites and it may be
possible to use the same restriction enzyme for multiple
stations in the future [12]. In addition to that, the uncertainty
of the real biochemical reaction may also have a great
influence on the performance of our algorithm. Therefore,
great improvements in the biochemical techniques are
urgently desired.
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