Supporting Information

Genetic Screens and Selections for Small Molecules Based on a Synthetic Riboswitch that Activates Protein Translation

Shawn K. Desai and Justin P. Gallivan* Department of Chemistry and Center for Fundamental and Applied Molecular Evolution, Emory University, 1515 Dickey Drive, Atlanta, GA 30322

General considerations

All plasmid manipulations were performed according to standard cloning techniques,^{S1} and the sequences of all constructs have been verified by DNA sequencing at the NSF-supported Center for Fundamental and Applied Molecular Evolution at Emory University. Purification of plasmid DNA, PCR products, and enzyme digestions was performed using kits from Qiagen (Chatsworth, CA). Caffeine, theophylline, 3-methylxanthine, and *o*-nitrophenyl-β-D-galactopyranoside were purchased from Sigma. IPTG and X-gal were purchased from US Biological. Synthetic oligonucleotides were purchased from IDT.

Plasmid construction

All constructs are derived from the previously described plasmid pLacZU1hpII, which comprises a weak IS10 promoter, followed by a ribosome-binding site, and a gene encoding a fusion between a fragment of the bacterial IS10 transposase and the *lacZ* gene.^{S2} Expression of this plasmid in *E. coli* provides the "no aptamer" control in Figure 1C.

Plasmid pSKD177.2 (wild-type aptamer)

The following strategy was used to introduce the mTCT8-4 aptamer into the 5'-UTR of the IS10lacZ fusion gene in the pLacZU1hpII plasmid.^{S2} pLacZU1hpII was used as a template for a PCR reaction with the forward primer SKD-057 and the reverse primer SKD-056. The PCR product was gel purified, digested with *Kpn*I and *Hind*III, gel purified, and cloned into the *Kpn*I and *Hind*III sites of pLacZU1hpII as described.^{S2} The *Kpn*I site is located immediately 5' of the aptamer sequence and a 5bp spacer (*TATAA*) was included immediately 3' to the aptamer sequence before the ribosome-binding site of the IS10-lacZ gene.

```
SKD-057
5'-
CCCGGTACCGGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCTATAAAGACAACAAGATGTGCGAACTCG
-3'
(mTCT8-4 aptamer, 5bp spacer, gene specific sequence)
```

SKD-056 5'- CGACGGGATCGATCCCCCC -3'

Plasmid pSKD185.1 (C27A mutation in the aptamer sequence)

The mutation C27A (this the 27th nucleotide of the mTCT8-4 sequence as reported in Jenison, R. D.; Gill, S. C.; Pardi, A.; Polisky, B., *Science* **1994**, *263*, 1425-1429, it has alternatively been referred to as C22A in Soukup, G. A.; Emilsson, G. A.; Breaker, R. R., *J. Mol. Biol.* **2000**, *298*, 623-632.) was prepared using the QuikChange method (Stratagene) using pSKD177.2 as the template and primers SKD-065 and SKD-066.

SKD-065
5'- CAGCATCGTCTTGATGCCATTGGCAGCACCTATAAAG -3'
(C to A mutation in mTCT8-4 aptamer)
SKD-066

5'- CTTTATAGGTGCTGCCAATGGCATCAAGACGATGCTG -3'

Plasmid pSKD314 (chloramphenicol selectable plasmid)

A cassette mutagenesis strategy was used to generate pSKD314. The chloramphenicol acetyl transferase (*cat*) gene was cloned from pBAD33^{s3} using PCR with the forward primer SKD-099 and the reverse primer SKD-094, to give product A. A separate PCR product (B) was generated using pSKD177.2 as a template with the forward primer SKD-071 and the reverse primer SKD-100. PCR products A and B contain an overlapping region and were mixed and amplified using the forward primer SKD-071 and the reverse primer SKD-094 to give PCR product C. PCR product C was digested with *Kpn*I and *Sac*I, gel purified, and cloned into the *Kpn*I and *Sac*I sites of pLacZU1hpII to afford plasmid pSKD305.1. A derivative of the Ptac1 promoter^{S4} lacking the *lac* operator sequence was engineered in place of the IS10 promoter in pSKD305.1 by first generating a PCR product (D) using pSKD305.1 as a template with the forward primer SKD-125 and the reverse primer SKD-098. PCR product D was digested with *Spe*I and *Sac*I, gel purified, and cloned into the *Xba*I and *Sac*I sites of pUC18, forming plasmid pSKD314. pSKD314 thus comprised the *cat* gene fused in-frame to the 61st amino acid of IS10 through a 7 amino acid linker (Trp-Pro-Gly-Ser-Pro-Ala-Ser) along with the mTCT8-4 aptamer in the 5'-UTR of the gene fusion under the control of the Ptac1 derivative promoter.

```
SKD-099
5'- GGCCTGGGTCCCCTGCTAGCGAGAAAAAATCACTGGATATACCACCGTTG -3'
(7 amino acid linker, gene specific segment)
```

SKD-094

```
5' - GGCGCATGAGCTC<u>TTACGCCCCGCCCTGCCACTCATCG</u> -3'
(<u>gene specific segment</u>)
SKD-071
5'- CGGCCCGGCCATAAACTGCCAGGAATTAATTTAC -3'
SKD-100
5'- GCTAGCAGGGGACCCAGGCCA<u>GATTCGTTTGATGTTATGTTTTGTTCTCGC</u> -3'
(7 amino acid linker, <u>gene specific segment</u>)
SKD-125
5'-
TCAATCACTAGTGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGG<u>GCTAACAAGTCTAGCGAACCGCAC</u>
-3'
(Ptac1-derived promoter, <u>gene specific segment</u>, mutation eliminates SpeI
site)
SKD-098
5' GTTAAATTGCCAACGCTTATTACCCAGCTCGATGC 3'
```

Plasmid pSKD441.1 (C27A mutation in aptamer of chloramphenicol selectable plasmid)

A cassette mutagenesis strategy was used to make plasmid pSKD441.1. A PCR product (A) was made using pSKD314 as a template with forward primer JPG007 and reverse primer SKD66. A separate PCR product (B) was formed using pSKD314 as a template with forward primer SKD65 and reverse primer JPG008. PCR products A and B contain an overlap, were mixed, and amplified using primers JPG007 and JPG008, forming PCR product C. PCR product C was digested with *Kpn*I and *Sac*I and cloned into these sites in plasmid pSKD314 forming plasmid pSKD441.1.

```
JPG-007
5'- GCGATTAAGTTGGGTAACGCCAGGG -3'
JPG-008
5'- GTATGTTGTGTGGGAATTGTGAGCGG- 3'
```

Plasmid pSKD345.1 (transcriptional fusion)

The transcriptional fusion contained 3 stop codons after the 61st amino acid of the IS10 transposase in plasmid pSKD177.2 followed by a 28 bp pair spacer and then a ribosome binding site and *lac*Z gene cloned from pRS415.^{S5} To make this construct, a PCR product (E) was generated using pSKD177.2 as a template with the forward primer SKD-071 and the reverse primer SKD-134. A second PCR product (F) was made using plasmid pRS415 as a template with the forward primer SKD-133 and the reverse primer SKD-098. PCR products E and F overlap, and they were mixed and amplified using primer SKD-071 and primer SKD-098, to give

PCR product G. PCR product G was gel purified, digested with *Kpn*I and *Sac*I, gel purified, and cloned into the *Kpn*I and *Sac*I sites in pLacZU1hpII, to give pSKD345.1.

```
SKD-133
5'- CTGACTCCTCGAGTATAAAGACAACAAGATGACCATGATTACGGATTCACTGGCCGTC -3'
(overlapping region, gene specific segment)
SKD-134
5'- CTTTATACTCGAGGAGTCAGAGATCTCAGTTTATTATTAGATTCGTTTGGTTATGTTTTGTTCTCGC -3'
(overlapping region, gene specific segment)
```

Growth curves of E. coli TOP10 cells

Three colonies of *E. coli* TOP10 cells harboring the wild-type synthetic riboswitch plasmid (SKD177.2) from an LB/agar plate containing ampicillin (50 μ g/mL) were grown overnight at 37 °C with shaking in culture tubes containing LB media (5 mL) supplemented with ampicillin (50 μ g/mL). 5 μ L of the overnight culture was used to inoculate 1.5 mL of LB media in a 24-well plate (Costar) supplemented with ampicillin (50 μ g/mL) and if necessary, appropriate concentrations of theophylline or caffeine. Plates were shaken at 215 rpm at 37 °C. The OD₆₀₀ readings for each well were recorded using a plate-reading spectrophotometer (BioTek) hourly for seven hours, along with a final 24-hour reading. All growth studies were conducted in triplicate, and data is presented as the mean ± s.e.m.

Figure S1. Growth curves for *E. coli* in the presence of varying concentrations of theophylline or caffeine.

^{S1} Sambrook, J.; Russell, D. W., *Molecular Cloning : Laboratory Manual*. 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, N.Y., 2001

^{s2} Jain, C.; Belasco, J. G., Meth. Enzym. 2000, 318, 309-332.

^{S3} Guzman, L. M.; Belin, D.; Carson, M. J.; Beckwith, J., J. Bacteriol. 1995, 177, 4121-4130.

^{S4} de Boer, H. A.; Comstock, L. J.; Vasser, M., Proc. Natl. Acad. Sci. USA 1983, 80, 21-25.

^{s5} Simons, R. W.; Houman, F.; Kleckner, N., *Gene* **1987**, *53*, 85-96.