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Abstract 
 

 The implementation of bioinformatics tools to produce automated annotations is a 

great advancement for the field of genomics, because it gives researchers more 

information to decode their genome and allows them to do so more rapidly. However, 

there are multiple automated annotation tools, and each completes the task in a slightly 

different manner. In this investigation, we compare the three annotations of the 

Halorhabdus utahensis genome produced by annotation systems supported by JGI, 

RAST, and JCVI. We found that these three annotations contained fundamental 

differences in number of genes predicted, gene length and start codon used. We also 

conducted closer analyses at certain predicted genes and biological pathways which 

yielded interesting results and conundrums that leave the possibility for further testing to 

improve these annotation systems.  

 

Introduction 
 

 The field of genomics revolves around the sequencing and then subsequent 

annotating of the genetic information of organisms. In recent years, sequencing has 

become increasingly efficient and cost-effective. The development of methods such as 

those that allow for large-scale parallel sequencing by synthesis from amplified 

fragments of DNA have given researchers the ability to sequence up to 1 Gb in a single 

run [1]. Such advancements in sequencing technology have produced many sequenced 

genomes. 
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 However, these sequences are untapped resources without the ability to decipher 

their meaning. The decoding or annotation of the genomes allows us to predict the 

location of protein-coding genes and therefore which proteins the organism is able to 

produce. Thus, annotation can also give us insight into the biological pathways that 

organisms use, new and undiscovered biological processes, and phylogenetic 

information. This information ultimately allows for a better understanding of how 

organisms are able to survive in their respective environments. Unfortunately, annotation 

of genetic data is not an easy task. Initially, labor and time-intensive manual annotation 

by wet-lab characterizations was the only viable way to annotate a genome. However, the 

advent of bioinformatics has allowed for faster annotation of genomes through automated 

annotation hybridized with manual annotation. That is, the implementation of computer 

science and mathematical tools to allow researchers to quickly compare non-annotated 

genomes to existing wet-lab characterizations. These tools extrapolate the data of wet-lab 

characterizations to show how well certain genes of the genome match the 

characterizations [2]. This gives researchers a preliminary idea of which genes are likely 

to exist in the genome they are annotating and allow them to more efficiently hand-curate 

the genome. 

 Three such automated annotation tools are JGI, RAST, and Manatee. The 

Integrated Microbial Genome (IMG) system powered by Joint Genome Institute (JGI) of 

the Department of Energy is an open resource for the annotation of all publicly available 

genomes. It predominantly uses NCBI’s RefSeq as a source of “publicly available 

genomes” [3]. In its current version (2.6), IMG contains 4207 genomes for comparative 

analysis. Rapid Annotation using Subsystems Technology (RAST) of the Fellowship for 

Interpretation of Genomes (FIG) and other organizations is an automated annotation 

system that uses a database of FIG hand-curated “subsystems” and protein families 

(FIGfams) which are based on these subsystems for the computation [2]. Manatee of the 

J. Craig Venter Institute (JCVI) is an annotation tool for viewing and alteration of the 

initial automatic annotation for prokaryotic genomes. The annotations of Manatee are run 

through the JCVI Annotation Service, which uses the GLIMMER system (a powerful 

tool that was found to identify 97-98% of all genes when compared with published 
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annotation) as the major tool to identify genes [4]. Then JCVI runs a search of these 

protein predictions against proteins from other protein databases. 

 This investigation compared the automated annotation of Halorhabdus utahensis 

AX-2 produced by these three tools. H. utahensis is a gram-negative halophile archaeon 

that lives in the Great Salt Lake in Utah. H. utahensis is an extremophile that grows 

optimally at 27% (w/v) NaCl; at the time of discovery, H. utahensis had the highest 

reported percent salinity growth optimum of any organism [5]. The ability of H. 

utahensis to live in such a hazardous environment leads one to believe that its genome is 

a potential source of information to discover and understand unique proteins and 

biological processes that were engineered by natural selection [6]. Therefore, it is 

imperative to have an annotation that is accurate and effective. An efficient automated 

annotation system is a key component to such an annotation; therefore, this study focuses 

on the annotation output by three major automated annotation tools: JGI, RAST, and 

Manatee. 

 

Materials and Methods 
 

 JGI sequenced the genome of Halorhabdus utahensis by the Sanger method and 

then ran the sequence through JGI’s IMG automated annotation tool before we received 

the genetic data. We accessed the annotated data through JGI’s website 

(http://img.jgi.doe.gov). We then began hand-annotation of RNA genes and then 

randomly selected genes (with and without predicted function as called by JGI) by the 

guidelines of the JGI’s educational annotation handbook (which can be found at 

http://gcat.davidson.edu/GcatWiki/index.php/Gene_Annotation_Template). Aside from 

JGI, other online Databases and tools including BLAST, CDD, TIGRfam, TMHMM, 

SignalP, PSORT, Phobius, Pfam, PDB, T-coffee, KEGG and ExPASy were used to find 

and verify data concerning COGs, predicted protein location, signal peptide probability, 

phylogenetics, biological pathways and EC numbers.  

 We then sent the H. utahensis genome to RAST (http://rast.nmpdr.org/) and 

Manatee (http://www.tigr.org/tigr-scripts/prok_manatee/shared/login.cgi). Upon 

receiving their annotations, which we accessed through their websites, we compared 

basic annotation results (i.e. number of genes found). Next, we created computer 
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programs to compare the genes that were found by each annotation system. As a 

consequence, we developed a computer program to compare the start and stop sites of the 

three annotation tools. We examined a number of genes that did not match across all 

three annotation tools by hand in order to find fundamental reasons behind the 

mismatches. In these annotations we used NCBI’s BLAST tools (i.e. BLASTp, BLAST2) 

to find protein matches and alignments of the information provided by the three 

annotations. 

 We hand-annotated various biological pathways to see which pathways were 

present or non-existent in H. utahensis and how useful the annotations were in doing so. 

We viewed the pathways through the KEGG pathway viewer and through the RAST-

customized KEGG metabolic analysis tool. Presence of enzymes was determined by 

using a combination of tools. We used ExPASy to retrieve EC number and enzyme 

names. We then used group-developed computer programs. We developed one program 

so that it searched for common amino acid FASTA sequences from halophilic organisms 

by EC number and then BLASTed them against H. utahensis’s genome. We developed 

another so that it searched for the presence of a various EC number in any of the three 

automated annotation. We developed a final program to search by protein name to see if 

the searched name was present in any of the annotations. 

 We chronicled our progress online through a WikiMedia powered site, which can 

be accessed at: 

http://gcat.davidson.edu/GcatWiki/index.php/Halorhabdus_utahensis_Genome. 

 

Results  
 

Three-way Annotation Comparison 

In our initial group overview and analysis of the three annotation systems, we 

recognized several fundamental differences in their respective annotations. First, we 

noticed a significant difference in the number of genes that were called by each 

annotation. Manatee predicted the most open reading frames (ORFs) with 3254, while 

JGI and RAST called 3097 and 2898, respectively.  After noticing this, we looked for 

reasons of these discrepancies. We found that there were only 1471 exact gene prediction 
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matches (see Figure 1); that is, cases in which all annotations called the same open 

reading frame (or the same locations for the start and stop codons). However, we also 

found that 2764 stop codon locations were shared by all three annotations. Therefore, 

there were 1293 instances in which all three annotations had the same stop codon, but at 

least one annotation had a different start codon location. In total, Manatee had the 

greatest number of unique stop codons with 254 (see Figure 2).  

 

 
 

 
 
 
 
 
Figure 1: Venn diagram displaying 
the exact gene matches (start and 
stop codons) shared between the 
three annotation tools, matches 
between only two, and independent 
gene calls. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 2: Venn diagram displaying the stop-
codon matches between all three annotation 
tools, matches between only two, and totally 
unique stop-codon annotations. 
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We then compiled a list which included gene annotations where either two of the 

systems called a gene identically and the other one missed it completely, or in which the 

other system called the same stop codon, but had a different start codon. We then 

examined a number of these discrepancies manually and found a number of patterns that 

helped to clarify the difference in gene predictions. We noticed that when we looked at 

these annotation discrepancies by hand that RAST very often used alternative start 

codons, whereas JGI and Manatee had greater propensities to use the common ATG start 

codon. We found that RAST used alternative start codons in 39.0% of its gene 

predictions, whereas JGI and Manatee used 14.3% and 19.9%, respectively (see Table 1). 

TTG and GTG were the only alternative start codons used; CTG was not used.   

 
 

Table 1: Table displaying the start codons used by each annotation tool, showing the 
comparison of the use of the usual ATG start codon and alternative start codons. 

 

We noticed that in the cases when RAST chose to use an alternative start codon 

rather than ATG, the alternative was almost exclusively upstream from the ATG start, 

resulting in a longer ORF. So, we then compared the predicted gene lengths of the  
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Figure 3. Graph that compares average gene length of the three annotation sites 

for when each shared stop codon locations (blue) and when each called a different stop  

codon (red) 

 

predictions in which all three annotations shared the same stop codon location. We found 

that JGI had the shortest genes on average with a 934 base pair average, Manatee had the  

second most with 940 base pairs, and RAST the longest with 967. We also looked at the 

instances when the annotations called a gene that the others did not. We found that the 

average gene lengths were significantly shorter, while RAST’s were still longest:  JGI 

with 290 base pairs, Manatee with 242 base pairs and RAST with 472 base pairs. Overall, 

Manatee had the shortest average gene length with 844.9, then JGI with 869.9 and RAST 

with 941.8 (see Figure 4).  

 
Figure 4: Graph displaying the comparison of the frequency of various gene sizes in base 

pairs in the three automated annotations 
 

Detailed Gene Prediction Analysis 

While doing the overview analysis of these sites and doing manual annotations, 

we came to find various gene predictions that stood out for various reasons. One such 

gene prediction was one that called for the transcriptional regulator nrdR. We found this 

gene originally as a call by Manatee at base pairs 3109722…3110204 (+); the other two 
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annotations called nothing in this region. We used BLASTp to verify Manatee’s 

prediction and found it to be legitimate call, with an expected value of 2e-56. (see Figure 

5). The match from BLASTp was also from another halophile, Natronomonas pharaonis, 

strengthening the validity of Manatee’s prediction. Being a transcriptional regulator, we 

expected that the other annotations should have predicted the gene as well, so we 

searched for it in different locations within the other annotations. We found that the other 

two annotations did indeed have a prediction for nrdR with a good expected value, but in 

a completely different location. RAST called the same gene at 7274..7765 (+) and JGI 

did at 7283...7765 (+); it important to not that they called the same stop codon, but 

different slightly on the start codon (RAST used the alternative start codon GTG). The 

very close similarity of these two predictions was verified by a BLAST2 alignment, 

which showed that there was only a 3 amino acid discrepancy (caused by the difference 

in start codons) (see Figure 6). 

 

 
Figure 5. BLASTp result used to verify the gene prediction by Manatee of nrdR 
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Figure 6. BLAST2 alignment of RAST and JGI nrdR gene predictions 

 
 
Finally, we checked to see if the new location was also called by Manatee; it was not. 

There were also no other genes called in that region. Therefore, there were two different 

locations, and both were never called by a single annotation.  

 

Biological Pathway Analysis 

 After doing analyses of single genes, we widened our scope and began to annotate 

biological pathways. In one such analysis, we looked at the metabolism of chitin. We  

found a potential coding region for chitinase, and knew that our organism had a source of 

chitin from brine shrimp that inhabit the Great Salt Lake. However, prior testing found 

that H. utahensis could not grow on N-acetyl-D-glucosamine (NAG), the monomer of 

chitin (5). Therefore, we chose to take a closer look at this pathway, because it was odd 

that the organism would code for chitinase, yet not be able to grow on its respective 

monomers. 

The pathway (see Figure 7) was adapted to H. utahensis by looking for the 

existence of each enzyme in the pathway in any of the annotations or by hand-curation 

using our computer program (see materials and methods). We found that in addition to 

having chitinase to break down chitin to NAG, H. utahensis also had the enzyme Chitin 

deacetylase to transform chitin into another polymer, chitosan with a waste product of 
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acetate. From NAG, the organism is also predicted to produce UDP-N-acetyl-D-

mannosaminouronate as UDP-N-acetyl-D-galactosaminuronate, as well as to reproduce 

chitin.  

 

Figure 7: A modified pathway of the aminosugars pathway from KEGG that displays the 
metabolism of Chitin in H. utahensis. Green denotes an enzyme that was found in one of 
the annotations of by hand-curation; red denotes an enzyme that was found not to exist 

 

 
 
Discussion 
 
 The results of this investigation give an initial insight into the differences between 

these three systems and also where the systems could be improved to provide a better 

automated annotation service. These insights call for increased side-by-side research 

between the algorithms that each annotation system uses, the predictions the systems 

yield and physiological, wet-lab testing to produce in order to produce data that would 

improve these three systems.  Finally, this investigation also gave us some preliminary 

information about the biological workings of H. Utahensis. 
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 The analysis of the nrdR gene prediction helps to highlight some of the 

discrepancies in the three annotations. It shows that these annotation systems are 

imperfect because they miss perfectly valid gene predictions, which is most likely due to 

the difference in characterizations that they use to compare the genome with. However, 

by synthesizing the three annotations and analyzing them manually, one is able to find 

more possible valid gene locations. Therefore, use of a corporate annotation coupled with 

manual annotation may be helpful to genomic researchers in the short-term. Analysis of 

the nrdR gene also gave an example of RAST’s propensity to use alternative start codons. 

In this case, the use of the alternative start codon and therefore the addition of 3 amino 

acids did not change the gene prediction. However, the use of alternative start codons and 

the subsequent lengthening of the ORF would invariably lead to changes in gene 

predictions. It would be interesting to look further into the use of alternative start codons 

with physiological testing to see how the alternative start codons affected the accuracy of 

the annotation.  

 The analysis of biological pathways in H. Utahensis like the metabolism of chitin 

in the aminosugars pathway provided information about the organism’s ability to perform 

certain biological processes and the ability of these systems to annotate pathways. 

Analysis of the aminosugars pathway showed that chitin could indeed be metabolized 

into NAG, its monomeric component and another polymer, chitosan. From NAG the final 

annotation showed that H. Utahensis could form UDP-N-acetyl-D-glucosamine, which 

could be used to reform chitin or be used in the biosynthesis of lipopolysaccarides. 

Therefore, H. Utahensis, a gram-negative archaeon, may use either of these structurally 

important compounds; however, it is more likely that chitin is metabolized to be used in 

the production of lipopolysaccarides, which are major components of the outer 

membranes of gram-negative bacteria (7). This is an instance where further physiological 

testing would help to better clarify how the organism utilizes chitin. 

 The process of pathway annotation through the use of the automated annotations 

proved to be somewhat difficult. Only RAST provides a KEGG component of its 

annotation which in theory highlights all enzymes called by RAST that had an EC 

number in the annotation. However, we found that this component often did not highlight 

its own calls. It would be helpful if this problem was solved, and if there was an option to 
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edit pathways by hand. In addition, the annotations sometimes did not label their calls 

with an EC number, which made it more difficult to find out whether an enzyme existed 

within an annotation. In addition, we found in many cases that our computer program 

found perfectly valid BLAST matches that supported the existence of enzymes that were 

overlooked by all three of the annotation systems. These cases further support the need 

for manual annotation as oversight for the errors that the automated annotations 

inevitably make. 

 By and large, this investigation yielded interesting findings about the tools 

provided by automated annotation and provided a good first look at the H. Utahensis 

genome. These three annotation systems are fundamentally different and produced three 

reasonably different annotations.  We found that synergizing the three automated 

annotations and using manual annotation as oversight seemed to produce the most logical 

and viable annotations. In the future, however, it is important that physiological testing is 

performed to pinpoint weaknesses of each system for improvement. An expansive 

investigation that looked at each system and then developed a new system that combined 

strengths of each into one program may be the most effective means to an improved 

system. In any case, this investigation has provided insight into the ability and further 

potential of automated annotation to greatly speed up research in the field of genomics. 
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Appendix 
 
 It is of important note that this research was conducted through the structure of an 

undergraduate biology course at Davidson College. There has been an increasing interest 

in involving undergraduates in genomic research, because of the opportunity for those 

with relatively limited biological background (i.e. undergraduates) to make meaningful 

impact in annotation of genomes with the aid of automated annotation (8). This research 

stands as testament to the work that undergraduates are capable of doing. 


