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Abstract

We show how DNA based computers can be used to solve the satis�ability problem for

boolean circuits. Furthermore, we show how DNA computers can solve optimization prob-

lems directly without �rst solving several decision problems. Our methods also enable random

sampling of satisfying assignments.

1 Introduction

In the very short history of DNA (deoxyribonucleic acid) based computing there have already been

a number of exciting results. First was Adleman's [1] beautiful insight that biological experiments

could solve the Directed Hamiltonian Path problem (DHP). Then Lipton [12] showed how to use

DNA to solve more general problems, namely to �nd satisfying assignments for arbitrary (directed)

contact networks, which includes the important case of arbitrary boolean formulas.

Since then there has been a number of papers on DNA computation. Most of these results are

of the following form: Given enough strands of DNA and certain biological operations, one can

simulate some classic model of computation e�ciently. Some compare to formulas, some to circuits,

others to 1-tape nondeterministic Turing machines.

The goal of this paper is twofold.

�Supported in part by NSF CCR{9304718.
yPartially supported by grants A119107 and A1019602 of AV �CR. Part of this work was done at Institute of

Computer Science, Hebrew University, Jerusalem, Israel; partially supported by Golda Meir Postgraduate Fellowship.
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First, we signi�cantly generalize the previous results on simulating classical computations using

DNA.

We show how to compute e�ciently satisfying assignments for general boolean circuits with

arbitrary binary gates. This solves one of the main open problems from [12], where only the case

of contact networks is studied. We also show that it is possible to use DNA to do approximate

counting of satisfying assignments, which means that DNA can be used to do computations that

go beyond NP. (Section 4.1)

We also show how to solve directly NP-hard optimization problems like MAX-Clique or MAX-

Circuit-Satis�ability (given a circuit, �nd a satisfying assignment in which the largest number of

variables are set to true). (Section 4.2)

As a last improvement, we show how the computation can be done more e�ciently if we know

that all the satisfying assignments fall in some simple subset, like a regular language. (Section 4.3)

Our second goal is to present a standard framework and survey the many results and claims

about the computational power of DNA. This is important if we are to eventually be able to

understand the power of DNA based computers. (Sections 2 and 3)

In this paper we assume that the biological operations are perfect. It is important to know what

the ultimate limits are without errors { if in the error-free case DNA cannot do exciting things, then

there is no hope in the realistic case. For the sake of completeness we note that several researchers

have already begun to take steps to make DNA algorithms more noise tolerant [8, 10, 3].

2 Comparison of several DNA computing results

Table 1 describes the results on simulation of various classical computational models using DNA

computation.

Each result is \rated" in two ways: how many biological steps does it take and how many DNA

strands does it use? Rating algorithms on these attributes is not new. This already occurs in the

area of parallel algorithms. A parallel algorithm must be fast, i.e. take few parallel steps. However,

it also must use relatively few parallel processors. Thus, an algorithm that takes O(logn) steps

but uses n4 processors is not practical. Since strands of DNA are used as parallel processors it is

natural to rate them in this dual manner.

By the number of DNA strand we understand the number of distinct strands that may appear

in the same test tube during the course of the algorithm (e.g. our circuit satis�ability algorithm

uses 2n di�erent strands in each test tube, but during the course of the algorithm these strands are

modi�ed by appending the intermediate results). This approximately corresponds to the volume

of the test tube. To be more precise, we should also include the length of the strands; however

this turns out to be much less relevant, as the length of the strands is usually linear in the size

of the problem, while the number of strands is exponential. For the purposes of evaluating the

\practicality" of DNA algorithms we assume that 1021 is an upper bound on the number of DNA

strands that are available to an algorithm. It will be useful to keep in mind that 1021 � 270.

By the number of steps we simply mean the total number of biological operations during the

algorithm. We do not distinguish between the di�erent operations here, even though the time

needed for each of them may be very di�erent. We discuss the di�erent operations later in this

section. We also do not account for the possibility of executing some of the operations in parallel,

2



which would add additional dimension to the classi�cation; we should note however that this is

important in the mentioned DES result [6].

A further description of each entry is given below. Solving the satis�ability problem for circuits

means to decide if there is a satisfying assignment of a boolean circuit presented to us, i.e. to decide

if it is possible to set the inputs of the circuit so that the circuit computes 1; similarly for other

devices.

Problem Bio Steps Strands

(1) Directed Hamiltonian path O(n) n!

(2) Contact network satis�ability O(s) 2
n

(3) Circuit satis�ability O(s) 2
n

(4) MAX-Circuit-Satis�ability O(s) 2
n

(5) Regular-Circuit-Satis�ability O(s) 2
n

(6) 1-tape NTM O(t) 2
N

(6a) Circuit satis�ability via (6) �(s2) 2
n

(7) Cellular Automata 1 t � S

(8) PSPACE O(S) 2
2S

(9) Polynomial Hierarchy O(s) 2
n

Table 1: Main results. New results are bold. We use s to denote the size of the computation

(circuit, contact network, etc.) being simulated. The various parameters in the table are explained

in more detail in the text.

Here are some more speci�c comments about the results from Table 1:

(1) This is the famous result of Adleman that shows that Directed Hamiltonian Path problem

can be solved by a DNA based computer [1]. His method also implies the same for any NP problem

via reductions. However, the di�culty with using this method for general NP problems is that it

uses too many strands of DNA to be practical for large scale problems. For graphs with n vertices,

and hence for the problems that reduce to them, the algorithm could require up to n! di�erent

strands. For DHP it is, however, e�cient, as there are actually n! potential solution. Accordingly,

encoding the problem via boolean circuits and using our new algorithms leaves us with 2
�(n logn)

strands, as we would encode each node of the path by log n bits.

(2) This is the result of Lipton [12] that SAT (satis�ability for formulas in conjunctive normal

form) and more generally contact network satis�ability (which includes general boolean formula

satis�ability) can be done in time linear in the size of the network (resp. formula). The key

improvement in this method is that it works for a more general class of problems, while the number

of strands is only 2
n
where n is the number of variables.

(3): We show that using DNA we can e�ciently �nd satisfying assignments for general boolean

circuits with fan-in two (i.e. with arbitrary binary gates), which signi�cantly improves the result

from [12]. The fact that circuits are very e�cient for a wide variety of problems and they are easy

to design, unlike e�cient Turing machines or contact networks, makes this result applicable for

practical problems. In Table 1 the number of gates in the circuit is denoted by s and the number

of input variables is denoted by n.
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(4): We extend the results (2) and (3) to handle the case of corresponding optimization problems:
solving MAX-Circuit-Satis�ability means �nding a satisfying assignment for a boolean circuit here
the largest number of variables is set to true. This is easy to do via binary search using the results
(2) and (3). However, the point is that we can avoid any slow down at all. This is a recurrent theme
throughout our work: Constants Matter! In DNA based computers since the number of strands is
limited and the steps are very slow one must be very careful to avoid certain \standard" tricks. If
these tricks increase strands or steps greatly they may make a result totally impractical.

(5): The results (3) and (4) can be made more e�cient by combining them with �nite state
machines. Let L = L1 \L2 be a set of n bit binary strings where L1 can be recognized by a circuit
with s gates and L2 can be recognized by a state automaton with k states. We show that a DNA
solution representing all strings in L can be constructed using O(kn + s) synthesized oligos and
O(s) extraction steps. This generalization increases the e�ciency of the algorithms presented in
(3) and (4) since one can reduce the size of a circuit by implementing part of it as an automaton.

(6) and (6a): The �rst result shows that DNA can simulate a 1-tape nondeterministic Turing
machine. Here t means the time and N the number of nondeterministic bits used by the Turing
machine. The latter result points out the reason that 1-tape NTM's are mainly of theoretical
interest. While 1-tape NTM's can do boolean circuit satis�ability in O(s2) time, it is in general
impossible to do it in better time than 
(s2) as there are many quadratic lower bounds on the
time required for 1-tape TM's to do even simple tasks. We feel that, therefore, this result is not of
great practical importance. The result was discovered by several authors using various signi�cantly
di�erent constructions. See for example Beaver [5], Papadimitriou [13], Rothemund [16], Smith and
Schweitzer [18], Roo� and Wagner [15].

(7): This is a construction due to Winfree [21] which shows how complicated DNA patterns
can be used to simulate cellular automata. The number of nucleotides used by the DNA pattern is
proportional to the product of the space used by the automata (S) and the number of generations
for which it is run (t). The attractive feature of this model is that computations are done in vitro.
Unlike other models, no intervention of a lab technician is required.

(8): This is the result of Beaver [5], Reif [14] and Papadimitriou [13] that it is possible to
simulate PSPACE with DNA operations; S denotes the space needed. This, too, is mainly a
theoretical result. The problem is that these methods use biological operations that are likely to be
impossible to implement in practice. Very roughly speaking, these operations expect that strands
of DNA will anneal with their exact counterparts, in parallel for all di�erent strands in the test
rube. It seems to be the case that for this to be feasible in constant time, the number of copies of
each strand needs to be of the same order of magnitude as the number of distinct strands. Using 270

as the bound on the number of available strands it follows that one can use these methods to run
algorithms which require at most about 35 bits of space. Such algorithms can be easily simulated
on conventional machines. Hence, any problem that can be solved in DNA using this technique
could also be solved on a conventional machine.

(9): This result shows how to simulate the polynomial time hierarchy; n now refers to the total
number of all quanti�ed variables. Unfortunately, like (9) it requires the manipulation of DNA in
ways which is unlikely to work in practice. It appeared in the previous version of this paper [7],
but we omit it in the current version because of our doubts about its practical relevance.

Next we compare the results based on the operations that they use. In our model of DNA com-
putation, as introduced by Lipton in [12] and described in more detail in Section 3, a computation
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is just a sequence of test tubes. Each test tube contains many strands of DNA that encode certain

computations. Each subsequent test tube is created from earlier ones by some biological operation.

We describe the operations in more detail in the next Section. Now we classify them according to

Table 2.

Operation Meaning

Extract Extract strands with given substring

Length Separate the strands by length

Pour Pour two test tubes into one, with no change of the individual

strands

Amplify PCR used to make copies of strands or selected subregions

Anneal Represents all the operations that combine a test tube of

single stranded DNA with other prepared strands and let

them anneal together to form double strands

Cut Apply a restriction enzyme to cut strands in test tube

Join Represents the annealing steps combining two test tubes that

are unlikely to be possible in practice (cf. (8) and (9) above)

Table 2: Basic types of operations used in current algorithms.

Table 3 summarizes the operations that are used by each of the previous results. In addition,

the test tubes are converted from double strands to single strands and back by heating and PCR;

also some form of Amplify and Anneal always need to be used to prepare the initial tube and

auxiliary tubes for some other operations { these occurrences are not included in the table below.

Similarly, we do not include the Amplify steps needed for the �nal test of presence of DNA.

Some results can be obtained using di�erent set of operations. Thus, the algorithms in this paper

can either use annealing, or can be implemented using restriction enzymes. Similarly, di�erent

variants of (6) use di�erent building blocks.

Problem Extract Length Pour Amplify Anneal Cut Join

(1) Directed Hamiltonian path yes yes no yes no no no

(2a) CNF-formula satis�ability yes no yes no no no no

(2b) Contact network satis�ability yes no yes yes no no no

(3) Circuit satis�ability yes no yes no yes no no

(4) MAX-Circuit-Satis�ability yes yes yes no yes no no

(5) Regular-Circuit-Satis�ability yes no yes no yes no no

(6) 1-tape NTM yes no yes yes yes yes no

(7) Cellular Automata no no no no yes no no

(8) PSPACE yes no yes yes yes no yes

(9) Polynomial Hierarchy yes no yes yes yes no yes

Table 3: Operations used in the results.

One of the exciting questions that is still open is what other operations are possible and how
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do the operations tradeo� among each other?

Typically the results claim the ability to solve some NP-hard problems in polynomial number

of biological steps. At this point it is important to stress what does it mean in practice. All the

techniques that are used so far can be simulated on classical parallel machines with the number

of processors proportional to the number of strands. Accordingly, the needed number of strands

is exponential in the size of the problem. Due to the physical limitations the number of strands

is limited, and hence this only means that DNA can help to solve instances of corresponding size.

Again, this is the reason why we have to be careful to make the methods as e�cient as possible.

It depends on the particular problem whether DNA computations have a good chance to com-

pare favorably with classical problems or not. For example, for the MAX-Clique problem, there

are algorithms achieving running time of about 2n=3 [20, 17], and these will be preferable to the

approach presented here which needs 2n strands of DNA. The methods presented in this paper can

be combined with results of [4] to produce more e�cient DNA algorithms for solving the MAX-

Clique problem. In general, DNA algorithms work for any problem, and hence may be favorable

for problems where no algorithms signi�cantly faster than 2n are known. An interesting example

of an application where the use of DNA may be favorable to classical algorithms is the method for

breaking DES [6].

To make these results practically applicable, it would be necessary to perform large-scale exper-

iments to verify whether it is possible to perform the needed operations on such a scale as needed

here, and give estimates of how long these operations will take. In this paper, we are not trying to

answer these questions, rather, our goal is to motivate such experiments.

3 DNA Model of Computation

A DNA strand is essentially a sequence (polymer) of four types of nucleotides distinguished by

one of four bases they contain; the bases are denoted A;C;G;T . The two ends of the strand are

distinct and are conventionally denoted as 3' end and 5' end. Two strands of DNA can form (under

appropriate conditions) a double strand, if the respective bases are Watson-Crick complements of

each other { A matches T and C matches G; also 3' end matches 5' end. (For more discussion of

the relevant biological background and the model see e.g. [6].)

We use a simple notation to explain the various operations to be performed on DNA. Given a

string x over the alphabet fA;C;G; Tg we denote by "x the single stranded DNA which is made

up of the letters of x oriented from the 5' end to the 3' end (the �rst letter of x is on the 5' end).

We denote by #x the Watson-Crick complement of the strand "x. When #x and "x anneal to each

other they form a double strand which we denote by lx.

Example:

"ACCTGC represents the single stranded DNA molecule 5'-ACCTGC-3'.

#ACCTGC represents the single stranded DNA molecule 3'-TGGACG-5'.

lACCTGC represents the double stranded DNA molecule 5'-ACCTGC-3'

3'-TGGACG-5'
.
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3.1 Biological Operations

Our fundamental model of computation is to apply a sequence of operations to a set of strands

in a test tube. The operations that we make use of are derived from the following experiments

commonly used in molecular biology today [1]. Here we present an idealized model which assumes

that all the operations are error-free.

It is possible to dissolve the double strands into single strands by heating the solution. This

process is referred to as melting. The reverse process when the complementary strands anneal is

performed by cooling the solution. Usually we use double strands of DNA to store the information

since the single strands are fragile. We convert them to single strands by heating as needed for

other operations.

Using restriction enzymes, it is possible to cut the strands at some distinctive marker.

Using a gelling technique called gel-electrophoresis [1] it is possible to separate the DNA strands

by length.

It is possible to detect if there is a DNA strand in a test tube and to sequence a given strand

(i.e., to \read" the sequence of bases of the strand).

Some more di�cult experiments are described below.

3.1.1 Extract

We need the ability to extract from a test tube all strands that contain any speci�c short nucleotide

sequence. To accomplish this we use the method of biotin-avidin a�nity puri�cation as described

in [1]. This technique works in the following way. If we want to extract all strands containing the

sequence " x, then we �rst create many copies of its complementary oligo (a short DNA strand),

namely #x. To these oligos we attach a biotin molecule, which are in turn anchored to an avidin

bead matrix. If we then melt the double strands in our test tube and pour them over this matrix,

those single strands that contain "x will anneal to the #x oligos anchored to the matrix. A simple

wash procedure will whisk away all strands that did not anneal, leaving behind only those strands

that contain "x, which can then be retrieved from the matrix. They are converted to double strands

by PCR (see below), if needed. We refer to this operation as an extract using beads of type #x.

3.1.2 Polymerization via DNA Polymerase

Given a particular single strand of DNA, we may wish to create its Watson-Crick complementary

strand. To do this we use the enzyme DNA polymerase. DNA polymerase will \read" the given

strand, called the template strand, in the 30 ! 50 direction and build the complementary strand in

the 50 ! 30 direction, one nucleotide at a time. In order to work, DNA polymerase actually requires

that there be a short portion of the template that is double stranded, and it is onto the end of this

short complementary piece, called the primer, that the enzyme will add the new nucleotides. For

example, if we have some strand "xyz, DNA polymerase cannot create its complement. However,

if we add # z to the solution and let it anneal to " xyz, we obtain " xy l z, and DNA polymerase

will be able to add nucleotides onto the free 3' end of z to create lxyz. Note that because DNA

polymerase only works in one direction, the partial duplex "x ly "z will yield lxy "z and not the

full duplex lxyz.
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3.1.3 Ampli�cation via PCR

At times we need to make copies of all the DNA strands in a test tube. This can be done with

a straightforward application of the polymerase chain reaction (PCR). PCR is a process that uses

DNA polymerase to make many copies of a DNA sequence. PCR works in the following way. If we

have the duplex l xyz, we �rst melt it to form " xyz and # xyz. To this solution we will add the

primer oligos # z and " x, which anneal to form the partial duplexes " xy l z and l x # yz. DNA

polymerase can then elongate the primers to create full duplexes of the form lxyz. Note that we

now have two copies of our original strand. If we just repeat this process, we will again double the

number of copies of the original strand in solution. Soon we will have four copies, then eight, then

sixteen, and so on, until we have enough copies for our purposes. Thus, if we can guarantee that

the primer sequences that we use occur on the ends of every strand, and only on the ends, then we

can use PCR to duplicate every strand in the test tube. We call this operation amplify.

3.1.4 Append

Sometimes we will need to elongate every strand in a test tube by tacking another short strand

onto the end. If every strand in the tube is of the form lXy, where X is arbitrary and y is �xed,

then this elongation can be accomplished in the following manner. We �rst perform an extract

on " y, which will give us all the \top" strands of every pair|that is, we get every "Xy and we

discard every #Xy. Then we introduce many copies of the single strand # yz into the solution,

and allow these to anneal with the " Xy strands. This results in partial duplexes of the form

"X l y # z. We can then use DNA polymerase to �ll in the rest of the duplex, giving us the full

duplex strands lXyz. This is exactly what we wanted: every strand has been elongated by the

addition of another short strand, in this case l z. We call this operation append. We note that

there are alternate methods for implementing append using restriction enzymes.

3.2 Representing Binary Strings

DNA strands can be used to represent binary strings as was shown in [12]. Let x = x1 : : :xn be

an n-bit binary string. The idea is to assign a unique sequence of 30 bases (a 30-mer) to each bit

position and bit value. The DNA strand representing the binary string x 2 f0; 1gn is

lS0 B1(x1) S1 B2(x2) S2 ; : : : ; Sn�1 Bn(xn) Sn;

where

1. B
i
(0) is the 30-mer used to encode the fact that the i-th bit of x is 0. Similarly, B

i(1) is the

30-mer used to encode the fact that the i-th bit is 1.

2. Si
is a 30-mer used as a separator between consecutive bits (0 � i � n).

It is crucial that the strings Bi
(x), S

i
, and their complements are distinct. In fact, it is desirable

that no two of them contain a long common substring. This can be achieved either by using the

words of some good code, or by choosing these words randomly. Our suggestion of using 30-mers

should be regarded as an estimate. Adleman, in his original experiment, used 20-mers. It is an

open research problem for experimental biologists to determine the appropriate oligo length to be
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used in DNA computations. From now on we will freely switch between a binary string and the

DNA strand representing it.

To initialize our algorithms, we create a test tube of DNA strands representing all 2
n
binary

strings of length n. This is done by forming all paths in the graph of Figure 1 using the method of

Adleman [1].

S1

B2(0)

B2(1)

S2

Bn(0)

Bn(1)

SnS(n-1)S0

B1(1)

B1(0)

Figure 1: Initialization Graph

The key feature of this representation is that it enables us to extract all strings whose i'th bit

has value j 2 f0; 1g by extracting all strands containing the DNA strand Bi(j), using the biological

extraction described above.

4 New Results

4.1 Circuit Satis�ability and Approximate Counting

Theorem 4.1 The circuit satis�ability problem for general boolean circuits with fan-in two can be

solved with 2
n strands and O(s) biological steps, where n is the number of variables and s is the

size of the circuit (the number of gates).

Proof We start as in Lipton [12] with a test tube of DNA strands that code all 2
n
possible input

bit sequences x1 : : :xn. Inductively we will produce a test tube that contains DNA strands of the

form x1 : : :xn y1 : : : yk where y1; : : : ; yk are the values of the �rst k gates of the circuits.

We �rst show how to add the next gate. Suppose the gate is yi _ yj ; the same method works for

all the other cases. We use extraction to form four test tubes: T00; T01; T10; T11 where Tuv contains

all the strands that have yi = u and yj = v. Now use the append operation to add 0 to all the

strands in the �rst three test tubes, and append 1 to all the strands in the last test tube. Finally

we pour all the test tubes together.

Let C be the given boolean circuit with fan-in two. We run through the process described above

for all the gates, and �nish with a test tube which contains DNA strands representing binary strings

of the form x1 : : :xn I y where x1 : : : xn is an input to the circuit, I is a string of bits representing

intermediate values of gates in C, and y is C(x1; : : : ; xn). We now extract all strands that have

y = 1 and obtain a set of strands which correspond to satisfying assignments. In particular we can

test if there is any strand, which solves the circuit satis�ability problem. 2

In fact the above procedure gives something much stronger than just a satisfying assignment.

Throughout the procedure we maintain the fact that the relative frequency of the DNA strands
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corresponding to each of 2
n
possible assignments to (x1; : : : ; xn) is the same.

It follows that the frequency of every satisfying assignment in the �nal test tube is the same.

Using a method described by Adleman [2] one can pick a random DNA strand from the test tube

and read from it a satisfying assignment (this can also be done using cloning techniques). Hence

one can perform random sampling on the set of satisfying assignments. Once we can do random

sampling of satisfying assignments, it is well-known we can also approximately count their number

using polynomial number of samples [19]. Note that we do not need to repeat the whole procedure to

obtain another sample|rather we can take many samples from the single last test tube, amplifying

it �rst if necessary. While for some problems approximate counting is known to be in random

polynomial time (mostly using rapidly mixing Markov chains, see e.g. [11] and references therein),

in general it is only known to be in �2 \ �2. Hence this result is stronger than just �nding a

satisfying assignment, which is in NP.

4.2 Optimization problems

Our next result shows how to directly solve any optimization problem that involves �nding the

largest (or smallest) set that satis�es a certain property in P. This includes optimization problems

such as MAX-Clique, MIN-Set-Cover, Shortest-Vector in a linear code, and others.

In general, we de�ne the MAX-Circuit-Satis�ability problem to be the problem of �nding the

maximal Hamming weight (number of 1's) of a satisfying assignment to a given boolean circuit of

fan-in two. We now show how to directly solve this optimization problem.

The results of the previous sections already imply these results in an ine�cient manner. For

instance, the ability to solve the satis�ability problem enables to test whether a clique of size k

exists in the graph. To �nd the largest clique we can perform a binary search on the values of k.

The problem with this approach is that it requires us to run a long bio-experiment several times.

Even if we do the binary search on the tube of all satisfying assignments obtained as in the previous

section, we need additional n logn biological steps. Thus the direct solution below is signi�cantly

more e�cient.

Theorem 4.2 MAX-Circuit-Satis�ability for boolean circuits with fan-in two can be solved with 2
n

strands and O(s) biological steps, where n is the number of variables and s is the size of the circuit.

Proof We modify the model of coding assignments by DNA strand introduced in Section 3 as

follows. We encode B
i(0) and Si by 20-mers (DNA strands of length 20) and B

i(1) by 30-mers.

Thus the length of a strand representing a binary string with k ones in it is

20(n+ 1) + 30k + 20(n� k) = 20(2n+ 1) + 10k:

To solve an instance of MAX-Circuit-Satis�ability problem we create a tube of DNA strands

representing all 2
n
assignments. This is done by forming all paths in the graph of Figure 1 using

the method of Adleman [1]. The length of the DNA strand representing an assignment with m 1's

is 20(2n+ 1) + 10m.

We apply the algorithm from Theorem 4.1 to obtain a tube containing DNA strands representing

all the satisfying assignments. (For MAX-CNF-Satis�ability we use Lipton's algorithm from [12].)

We now use the gelling technique described in [1] to separate the DNA strands by length. The

longest DNA strand corresponds to a maximal satisfying assignment. 2
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The simplicity of this algorithm is perhaps best seen on the example of the MAX-Clique problem.

Given a graphG = (V;E) on n vertices, we encode the 2n sets of vertices similarly as in Theorem 4.2.

The length of the DNA strand representing the set S � V is 20(2n+1)+10jSj. Now we �lter out all

DNA strands that represent sets that are not cliques in G. This can easily be done by looping over

all non-edges e = (u; v) of G and throwing away those sets that contain both u and v. At the end

of the process we separate the DNA strands by length. The longest DNA strand corresponds to a

maximal clique in G. This process requires only n2�jEj biological steps. We note that recently [4]

showed that these techniques combined with a more clever combinatorial algorithm can be used to

solve MAX-Clique and 3-Coloring more e�ciently, i.e. using less than 2n strands for a graph with

n vertices.

4.3 Regular-Circuit-Satis�ability: using state automata

As was explained in the introduction, molecular computers can be thought of as vastly parallel

machines. However, each step of a molecular machine takes a long time, e.g. several hours. It is

thus crucial to try and save as much as possible on the number of steps it takes to solve a given

problem.

Towards this goal we show how one can reduce the number of biological steps by replacing parts

of the circuit by a state automaton. The idea is to replace the initialization graph of Figure 1 with

a more complicated graph. For example, instead of generating all string in f0; 1gn we can generate

only strings �x 2 f0; 1gn such that x1 � � � � � x
n
= 0. This can be used to reduce the size of the

circuit being evaluated since the circuit need not test the parity of the input. Even though we

use a more complicated version of the graph in Figure 1, the number of biological steps it takes to

form all paths in the graph is una�ected. We only increase the number of di�erent initial strands

proportionally to the size of the initialization graph, which is a very small penalty.

A typical application is the following problem: Given a graph G = (V;E) with jV j odd, �nd

a 3-coloring of G with an even number of red vertices. The method of [12] can be used to solve

this problem in the following way: �rst create a set of DNA strands representing all strings in

fR;G;BgjV j. This can be done using a graph similar to the one shown in Figure 1. Then �lter out

all strands that represent illegal colorings of G. Finally, �lter out all strands representing colorings

with an odd number of red vertices. This last step takes O(jV j) steps. Had the initial set of DNA

strands only represented strings with an even number of red vertices this last �ltering step would

be unnecessary. This can be done by modifying the graph of Figure 1 to only generate strings in

fR;G;BgjV j with an even number of R's. Simply at each level of the graph split the nodes Si into

two nodes S0
i
; S 00

i
that keep track of the parity of the number of R's so far.

The above method can be generalized to arbitrary automata. Let A be a non-deterministic

automaton accepting binary inputs where Q is the set of states of A. Let � : Q � f0; 1g ! 2Q be

the transition map of the automaton (i.e. the automaton moves from state q on input t to all states

in the set �(q; s)). The size of the transition map �, denoted by j�j, is de�ned to be the number of

triplets (q1; q2; t) 2 Q�Q� f0; 1g such that q2 2 �(q1; t). For instance, a deterministic automaton

always satis�es j�j = 2jQj. Notice that always j�j < 2jQj2. We obtain the following theorem:

Theorem 4.3 Let L � f0; 1gn be a set of strings recognized by a non-deterministic automata with

a transition map of size j�j. Then by synthesizing nj�j+ n + 1 oligos one can construct a solution

of DNA strands containing all strings in L using only hybridization and ligation reactions, and two
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extractions.

Proof Let A be an automata with k states recognizing the language L. The idea is to split each

separator nodes Si of Figure 1 into k nodes Si(1); : : : ; Si(k). These nodes will keep track of the

state of the automata.

More precisely, let Q = f1; 2; : : : ; kg be the states of the automaton A where 1 is the initial

state and k is the accepting state (since we know the length of the string, it is su�cient to have one

accepting state). Let � : Q�f0; 1g ! 2Q be the transition map of the automaton. We assume that

30-mers Si(q) and Bi(t) have already been agreed upon as discussed in Section 3.2. Note that the

separators Si(q), 1 � i < n, are doubled in the strands we use; We synthesize the following oligos:

1. For each i = 1; : : : ; n � 1 and state q 2 Q synthesize the Watson-Crick complement of the

doubled separator oligo Si(q)Si(q); we also synthesize the Watson-Crick complements of S0(1)

and Sn(k).

2. For each i = 1; : : : ; n and triplet (q1; q2; t) 2 Q� Q� f0; 1g such that q2 2 �(q1; t) synthesize

the oligo Si�1(q1) �Bi(t) � Si(q2).

Overall, nj�j+n+1 oligos were synthesized. When these oligos are mixed together and are allowed

to anneal to one another we obtain the set of all computations of the automata. We then apply a

ligation enzyme to ligate the oligos into a DNA sequence. Finally we extract all strands containing

the oligo S0(1) (representing the initial state) and the oligo Sn(k) (representing the �nal state). The

resulting strands are exactly those strings accepted by the automaton. Alternatively, this �nal step

can be done by applying PCR with S0(1) and Sn(k) as primers. Since only the strings accepted by

the automata are ampli�ed at an exponential rate, all other strings are diluted to an undetectable

level. 2

S  (1)
1S  (1)

1 2
S  (2)

2
S  (2)

2
S  (2)

3
S  (2)

3
S  (2)

S  (2)

0 0

1

1

1 2

DNA Strand representing the four bit string  0101 :

S  (1)
1

S  (1)
1

S  (1)
1 1 1

S  (1)B  (0) B  (1) B  (0) B  (1) 443 320
S  (2) S  (2)

Figure 2: Strands formed by parity automaton

Figure 2 shows the strands that are formed when the standard two state automata for creating

even binary strings (i.e. x1 � : : :� xn = 0) is used. As was discussed above, the method described
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in Theorem 4.3 can be used to simplify the Circuit-Satis�ability problem by replacing parts of the

circuit by an automaton. We obtain the following result which we refer to as Regular-Circuit-

Satis�ability.

Theorem 4.4 Let L = L1 \ L2 � f0; 1gn be a set of strings where L1 is recognized by a non-

deterministic automaton with transition map of size j�j and L2 can be recognized by a circuit with

s gates. Then using O(j�jn + s) synthesized oligos and O(s) biological steps one can construct a

solution of DNA strands representing all strings in L.

Proof The theorem is an immediate consequence of Theorems 4.3 and 4.1. 2

We can extend this technique beyond regular languages by using state automata with a non-

constant (but relatively small) number of states. An example would be to �nd a 3-coloring with

equal number of red, blue and green vertices for a graph with n = 3m nodes. The state machine

which keeps count of the red and blue vertices has O(n2) states, hence the initialization graph has

O(n3) vertices.

It worth pointing out that the order of the inputs to a circuit does not matter (e.g. the variable

x1 can be input as the second wire and vice versa). However, reordering the inputs to an automata

can greatly simplify things. For instance, the language 0n1n can recognized by an n-state automata.

However if we reorder the inputs to obtain the language (01)n then an automaton with two states

su�ces. Therefore, when applying Theorem 4.4 one should choose a clever ordering of the inputs

so as to minimize the number of the states in the appropriate automata.

In another variation of this technique, we can use the separation of DNA strands of various

lengths. For example, suppose we want to �nd a 3-coloring with at most 10 red vertices. Similarly

as in Theorem 4.2 we encode red vertices by shorter strands than the other ones and after forming

all the sequences we use the length separation to extract the sequences we want. This time we use

a single extra biological step, with no penalty in the size of the graph at all.

5 Conclusions

The main result of this paper is that DNA based computers can be used to solve the satis�ability

problem for boolean circuits. The algorithm presented is considerably more e�cient than simulating

a NTM using DNA as was suggested by [5, 15, 16, 18]. Furthermore we showed how to improve

the performance of the algorithm by using state automata. For optimization problems such as

MAX-Clique we showed a technique for solving the problem directly without �rst solving several

decision problems. We also showed that the algorithm can be extended to perform approximate

counting.

There are still many issues to be considered. Foremost is the issue of errors. DNA molecules are

known to be fragile, they break easily. Steps towards coping with errors were taken in [8, 9, 10, 3].

It is essential to obtain a better understanding of the type of errors which may occur and to come

up with further techniques for error recovery.

Let us point out that our algorithms seem to be more feasible and resistant to certain kind

of errors than most of the previous ones. In [9] the algorithms are classi�ed in two ways. First,

the algorithms are classi�ed according to how the volume changes during the computation. In

Decreasing Volume Algorithms the number of strands in a test tube decreases as the algorithm

executes, Constant Volume Algorithms maintain the number of strands constant throughout the
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computation, and Mixed Algorithms are those �tting in neither of the previous classes. Second,

an algorithm is said to be Uniform if the following condition holds in every test tube throughout

the computation: any two di�erent strands have the same number of copies in the test tube. The

classi�cation according to the volume and uniformity turns out to be very important in the context

of resistance to errors { decreasing volume and uniform algorithms are signi�cantly better than

others in this respect, whereas mixed volume and nonuniform algorithms are hard to deal with,

see [8, 9] for a discussion of this topic. All our algorithms are very good in this respect, since they

are all uniform and constant volume.
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