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Abstract. Genetic algorithms, DNA computing, and in vitro evolution are brie
y
discussed. Elements of these are combined into laboratory procedures, and prelim-
inary results are shown. The traditional test problem for genetic algorithms called
the MAX 1s problem is addressed.

1 Introduction

Evolution is a concept of obtaining adaptation through the interplay of se-
lection and diversity. Analogies from evolution have been used in both com-
puting and molecular biology. These two areas are called respectively \evolu-
tionary computation" and \in vitro evolution." From the beginning of DNA
based computing to the present there have been calls [15,3] to consider car-
rying out evolutionary computations using genetic materials in vitro. Almost
two years ago, however, the �rst design for a DNA based genetic algorithm
for a speci�c class of problems was proposed [2]. Unfortunately, this has not
yet been carried out in the laboratory.

In this paper we identify elements of evolutionary computations and in

vitro evolution that we recommend combining to address three simple prob-
lems. Speci�cally, we choose \genetic algorithms" because they manipulate
bitstrings using operations of pointwise mutation and crossover. These opera-
tions can be performed by modi�cations of techniques from in vitro evolution.
In particular, single point crossover extends results due to Stemmer [17,13].

We propose a laboratory implementation of one of these computations,
and present our design. The crucial operation of physically separating DNA
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strands by their \�tness" is demonstrated using 2-d denaturing gradient gel
electrophoresis.

2 Genetic Algorithms and Other Evolutionary
Computations

Genetic algorithms and other types of \evolutionary computation" come in
many,many di�erent varieties, but most are variations and/or elaborations on
the following very loose outline. Genetic algorithms typically cycle electronic
computers through the following steps, maintaining a population of bitstrings
representing candidate solutions of a problem.

Genetic Algorithm

Begin with a diverse initial population, perhaps chosen randomly.

1. Evaluate �tness of candidates.

2. Select more �t candidates to breed and lesser candidates to be re-
placed.

3. Induce variation by breeding.

Repeat.

It should be mentioned that this loose outline �ts several evolutionary
computation paradigms having varying techniques for �tness evaluation, se-
lection, and breeding.

2.1 Evolutionary Computation Has Controversial Aspects

We are careful to make the following point. We do not take any stance on
the virtues of any particular method of evolutionary computation. Instead,
we aspire to provide the means for assessing some evolutionary computations
using population sizes larger than is practical with conventional computers.

Evolutionary computation makes few assumptions and is ostensibly ap-
plicable to very broad classes of problems. Naturally, this makes it di�cult
to establish any provable guidelines. Just to list a few debatable issues, we
have

� How does one model �tness?

� Is crossover disruptive?

� What are the roles of transposition, inversions, and introns?

� Would pointwise mutation alone su�ce?

� Which evolutionary computations predictably converge?

� How does one recognize convergence?
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2.2 Varieties of Evolutionary Computation

Several di�erent computing paradigms are inspired by biological evolution:
genetic algorithms, classi�er systems, genetic programming, evolutionary pro-
gramming, and evolution strategies. A good initial orientation to all these
paradigms is found at [8].

Indispensable books on genetic algorithms include the founding treatise of
Holland [9], the popular textbook of Goldberg [5], and the books of Mitchell
[11] and Forrest [4]. A bibliography of about 4,400 contributions to genetic
algorithms is available [6].

3 DNA Is Suitable for Implementing Genetic
Algorithms

We expect computing time using DNA to be proportional to the number of
generations required. This motivates incorporating both pointwise mutation
and crossover, and for that matter any evolutionary analogies that might
reduce the number of required generations.

Modi�cations to current technology su�ce to implement crossover and
pointwise mutation. However, selecting DNA strands for \breeding" in ge-
netic algorithms is moderately challenging because one must physically sep-
arate DNA strands according to their \�tness."

3.1 DNA Attributes Suit Genetic Algorithms

Of all evolutionarily inspired approaches, genetic algorithms seem partic-
ularly suited to implementation using DNA. This is because genetic algo-
rithms are generally based on manipulating populations of bitstrings using
both crossover and pointwise mutation.

DNA computing techniques are desirable for genetic algorithm compu-
tations. The �rst main advantage is that these techniques might process,
in parallel, populations billions of times larger than is usual for conventional
computers. The usual expectation is that larger populations can sustain larger
ranges of genetic variation and thus can generate high-�tness individuals in
fewer generations.

The second main advantage is the massive information storage available
using DNA. For example, a gram of DNA contains about 1021 bases. The
information content is approximately 2�1021 bits, greatly exceeding the 200
petabyte storage of all the digital magnetic tape produced in one year (1995).
[24].

A third advantage is that methods for implementing crossover using DNA
are possible as variations on \Sexual PCR" pioneered by Stemmer [17].

An additional issue is that biolaboratory operations on DNA inherently
involve errors. These are more tolerable in executing genetic algorithms than
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in executing deterministic algorithms.To some extent, errors may be regarded
as contributing to desirable genetic diversity.

3.2 DNA Genetic Algorithms Compared to Supercomputers

The following oversimpli�ed estimates indicate DNA computing techniques
can compare favorably to supercomputers in some cases. These favorable
cases include executing genetic algorithms having simple �tness evaluations
and very large populations of candidate solutions.

Consider a population represented by total of p bits. The work involved
in executing a genetic algorithm can be estimated as

T � g � O(p) �tness evaluations; (1)

where g is the number of generations used.
Assume the �tness evaluation of a candidate solution processes all the bits

of the candidate solution. A state-of-the-art tera
op supercomputer performs
1012 operations per second. Thus, from Eq 1 we have the very rough estimate

T � g � p� 10�12 seconds � g � p� 10�17 days: (2)

To compare this to DNA computing, let us assume the �tness evaluation
of an entire population can be done in the laboratory in 24 hours. Thus, from
Eq 1 the time complexity of a DNA approach to genetic algorithms is seen
to be

T � g days: (3)

Essentially no new laboratory techniques or equipment would be needed
to use gram quantities of DNA. This corresponds to populations represented
by about p = 1021 bits. For populations of this size, we see fromEq 2 and from
Eq 3 that DNA implementation of genetic algorithms compares favorably to
supercomputer time complexity.

Some caution is needed in interpreting this comparison. The comparison
is based on unprecedented large populations. (Still miniscule compared to the
size of the space of all possible solutions, of course!) As far as we know, it is
unclear exactly how bene�cial large population sizes might be. The classical
\schema theorem" of Holland [9] says a population of N distinct candidates
probes O(N3) potential solutions. However the applicability of this result,
like many others in evolutionary computation, is actively debated.

This may be an appropriate point to repeat our primary goal. We do
not take any stance on the virtues of any particular method of evolutionary
computation. Instead, we aspire to provide the means for assessing some
evolutionary computations using population sizes larger than is practical with
conventional computers.
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3.3 DNA Genetic Algorithms Compared to In Vitro Evolution

Genetic algorithms are reminiscent of methods in molecular biology referred
to as \in vitro evolution." Naturally, these methods use �tness criteria con-
strained to properties of biomolecular interest. Indeed, �nding means to
physically separate biological materials by \�tness" has determined which
problems are addressed by in vitro evolution. In vitro methods suit some
very important but relatively small classes of problems seeking ribozymes
[21,12,7,19], binding sites [20,19], enzymes [14], etc.

In contrast to in vitro evolution, genetic algorithms use unconstrained

�tness criteria on bitstrings. Consider computations using bitstrings of length
100. Such computations can, in principal, evolve a population of �xed size
in such a way as to create any one of 2100 � 1030 possible outcomes. Thus,
genetic algorithmmethods using DNA can address larger, but less structured,
classes of problems than does in vitro evolution.

Genetic algorithms using DNA would be similar to conventional comput-
ers in that (virtually) all 1030 possible inputs and outputs would be equally
suitable. In contrast, in vitro evolution is suited to the very rare DNA se-
quences encoding biological functionality. For example, bitstrings might be
realized as DNA strands having 100 As and Gs. But as far as we know very
few, if any, such DNA bitstrings code for biologically active functions. Or
to put it another way, virtually all sequences are equally \meaningful" for
the purposes of genetic algorithms. In contrast, in vitro evolution focuses
on variations of the very rare DNA sequences of biological or biochemical
interest.

3.4 Simple Problems for DNA Genetic Algorithms

Here we present three problems that are relatively simple to address using
DNA implementations of genetic algorithms. The common thread is that
more �t candidate strands of DNA can be physically separated from less �t
candidates according to how well they match (hybridize with) \target" DNA
strands. More details are provided in Section 4.

The MAX 1s Problem This is a traditional test problem for genetic al-
gorithms. It involves binary bitstrings of �xed length. An initial population
(usually randomly generated) is given. The objective is to evolve some bit-
strings to match a prespeci�ed \target" (generally taken to be all 1s).

A design of laboratory techniques for solving this problem using DNA is
given in Section 4 of this paper.

The Royal Road Problem The \Royal Road" family of problems are of
particular interest because it is one of very few families of problems for which
theoretical predictions are available [23].
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Again, a �xed-length target is speci�ed consisting of N blocks, each block
consisting of K bits. Each block of a candidate bitstring makes no contribu-
tion to �tness unless it is a perfect match to the corresponding block on the
target. Conventionally, the �tness of a candidate is taken to be the number
of such perfectly matched blocks. The objective is to evolve some bitstrings
to perfectly match the target.

This family of problems got its name from the fact that it was intended
to be especially suitable for genetic algorithms using crossover. Distressingly,
computer trials exhibit a wide variety of unpleasant convergence behaviors
(see Figure 1). Con�rming an earlier conjecture [22], a recent seminal pa-
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Fig. 1. Evolution of average �tness <f> for a genetic algorithm for the Royal Road
problem varies greatly with population size M , mutation rate q, and the number of
blocks N , each having K bits. Eight graphs show the e�ects of varying parameters
from those used in graph (d). (From [23], with permission.)

per [23] from the Santa Fe Institute predicts the previously unanticipated
behaviors for the Royal Road problem, attributing them to limitations on
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population sizes. In future work on Royal Road problems we hope to test the
predictions of the Santa Fe paper using population sizes which are too large
to be practical for conventional computers.

The Cold War Problem The above problems are particularly suitable
for theoretical analysis because the answer (target) is known in advance. We
now mention a problem of another kind with many potential applications.
In the Cold War Problem, two populations are simultaneously evolved. For
simplicity, let us continue to refer to them as candidates and targets, and
assume they are of �xed length.

Each of two parties is able to generate (breed) vast numbers of possible
o�ers (candidates or targets) re
ecting their own interests. The objective is to
evolve good matches between candidates and targets. An outline of a genetic
algorithm for this problem appears below.

Genetic Algorithm for the Cold War Problem

Begin with diverse initial populations of targets and candidates.

1. Evaluate �tness of target-candidate pairs.

2. Select more �t pairs to breed and lesser pairs to be replaced.

3. Using more �t pairs, separate candidates from targets.

(a) Induce variation of candidates by breeding.
(b) Induce variation of targets by breeding.

4. Combine o�spring candidates and targets, obtaining a new genera-
tion.

Repeat.

This problem is particularly interesting because it further exploits the
massive parallelism inherent in DNA computing. Here, �tness evaluation is
to be done, not for individual candidates, but for pairs of candidates. This
means that conventional computers would have a time complexity of T �

g�p2�10�17 days instead of T � g�p�10�17 days, as in Eq 2. In contrast,
the time complexity of the DNA implementation is unchanged, T � g days:

4 The MAX 1s Problem Implemented in DNA

This section begins with an outline of a DNA implementation (illustrated in
Figure 2). The remainder of the section gives details and preliminary labo-
ratory results.

Throughout this section, information is grouped in the following cate-
gories: (1) candidate pool, (2) �tness evaluation, (3) selection and (4) breed-
ing.
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Fig. 2. Outline of DNA implementation of genetic algorithms for MAX 1s problem.
The candidate pool appears in the upper left. Selection using 2-d DGGE appears
at the lower left. Puri�cation and ampli�cation of the more �t candidate strands
appears at the lower right. Breeding using crossover appears at the upper right.

4.1 Outline of DNA Implementation

The implementation is given by the following outline. The same information,
with a few added details, is shown in Figure 2.

DNA Genetic Algorithm for MAX 1s Problem

Begin with a diverse initial population of candidates.
1. Evaluate �tness by hybridizing to target strands and physically sep-

arate on a 2-d gel.
2. Select and purify more �t candidates to breed.
3. Amplify �t candidates with pointwise mutation and reserve a portion.
4. Breed candidates, using crossover.
5. Combine reserved and bred candidates, obtaining a new generation.
Repeat.
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4.2 Design of Candidate Solutions and Target DNA Strands

Figure 3 shows our design. A target strand and a perfect candidate strand are

/-------------------TARGET------------------\

/-----CG-CLAMP--------\/------- 80 A's------\

5' -> CGCCCTCCGCCCGTCGCCCGCCCAAAAAAA........AAAAAAA -> 3'

3' <- GCGGGCGGCGGGCAGCGGGCGGGTTTTTTT........TTTTTTTGTGATCACTCAGCATAAT <- 5'

\--CG-CLAMP COMPL-----/\------ 80 T's-------/\----- TAIL -----/

\---------------PERFECT CANDIDATE-----------------------------/

Fig. 3. Design of target and a perfect candidate. Imperfect candidates would have
a mixture of 80 Ts and Cs in place of the 80 Ts in the perfect candidate.

shown in the �gure. Imperfect candidate strands have a mixture of 80 Ts and
Cs instead of 80 consecutive Ts. At the 30 end of all candidate strands there
is a universal section complementary to the CG clamp section of the target
strands. The CG clamp has been designed to encourage correct alignment and
to avoid secondary structure (hybridizing to itself). The candidate strands
are longer to facilitate eventual separation of target and candidate strands
using denaturing gel electrophoresis. All 50 ends of the candidate strands are
extended by a universal tail sequence. Since candidate strands have known
primer sites at both ends, they can be ampli�ed by PCR.

4.3 Fitness Evaluation by DGGE Physical Separation of DNA

Our �tness evaluation is carried out in the laboratory using two-dimensional
(2-d) denaturing gradient gel electrophoresis (DGGE) [10]. Let us �rst review
the nature of DGGE. Figure 4 shows DGGE from our laboratory having per-
fect candidates combined with target strands. The target strands hybridize
(stick) to the perfect candidate strands, with a tail of unmatched bases at
the 50 end. The mixture of hybridized strands is placed uniformly along the
top of the gel. The hybridized strands travel vertically downward in the gel
as a result of an applied electric �eld. However, their speed of migration
is determined by their initial placement from left to right; that is, by how
strongly they are denatured (pulled apart). On the left, where no denaturant
is encountered, the strands move relatively quickly downward. In the center,
they move more slowly because they encounter intermediate denaturing. At
the extreme right, the stands are able to move only very slowly because the
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Fig. 4. DGGE using perfect candidates. DNA strands move downward from a reser-
voir at the top of the �gure. The speed of vertical strand migration is retarded as
strands come apart (denature) as shown schematically on the right edge of the
�gure.

strands are almost completely pulled apart except in the more resistant CG
clamp region.

An important fact for DNA computing is that DGGE can detect a single

base mismatch. Indeed, this is a common application of DGGE in molecular
biology [10].

We heuristically reason that when we repeat the above experiment with
a mixture of targets and imperfect candidates, we expect that everywhere
across the gel the candidate strands that best match (hybridize to) the tar-
gets will migrate downward relatively faster. In fact, imperfect matches ex-
hibit vertical spreading in our experiments. See Figure 5. In this �gure the
80 variable positions of the imperfect candidates are chosen to be Ts with
probability 0:8 and Cs with probability 0:2.

4.4 Selection of More Fit Candidate Solutions

Selection is done by excising a portion of the 2-d gel and extracting the DNA
strands from it. This allows a wide latitude for selection criteria. The most �t
candidates are presumably lowest on any vertical line. However, the nature
of variation from left to right is not clear. Further experiments will be needed
to optimize a selection strategy. Experience in genetic algorithm computing
demonstrates the desirability of maintaining genetic diversity to prevent the
loss of genetic information which may be needed in later stages of evolution.

The selected DNA is puri�ed (for example by length, using conventional
denaturing gel electrophoresis) to get rid of target strands. The puri�ed candi-
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Fig. 5. DGGE vertically separates imperfect candidates. The speed of vertical
strand migration is retarded as strands come apart (denature). This is due to
two factors: increasing denaturant concentration and decreasing quality of target-
candidate matching (hybridization).

date strands are ampli�ed by PCR, which can also induce pointwise mutation
at a rate of 10�3 to 10�4 [1]. One of the PCR primers, the one that makes
strands complementary to the candidates, is phosphorylated on its 50 end so
that these strands can later be digested with �-exonuclease.

A portion of the resulting double stranded product is temporarily re-
served; the remainder is used for breeding.

4.5 Breeding Using Single Point Crossover

The portion of double stranded product to be used for breeding is partially di-
gested with DNase I to nick (cut only one strand) at random locations about
once. The nicked strands are combined with a similar amount of reserved un-
nicked strands. The mixture is denatured (strands are melted apart) and
allowed to reanneal forming new combinations. Many, many possible con�g-
urations could be formed. But among these, some will be intact complements
of candidate strands annealed to a 50 end of a candidate strand including its
CG clamp, which enforces alignment. These are featured in the upper right
corner of Figure 2. By adding DNA polymerase, the partial candidate strand
is extended to a full length legal candidate combining its genetic informa-
tion with that encoded in the intact strand. The net result is single point
crossover. The o�spring candidate strand has a block of genetic information
from one parent followed by another block from a di�erent parent.
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The Sexual PCR (gene shu�ing) technique of Stemmer [17,13] is similar
to our crossover operation. Sexual PCR would be limited to populations of
candidate DNA strands which are very similar and nonuniformly structured.
These two properties are needed to ensure alignment of the DNA fragments.
We avoid these restrictions on the variety of candidate strands by adding
the universal CG sequences at the ends of the candidate strands to enforce
alignment. However, our present approach limits us to using single point
crossover (which is usually used in genetic algorithms).

Finally, the reaction products are combined with the remainder of the re-
served material and complementary strands are digested with �-exonuclease.
Our crossover reactions may produce many products besides o�spring can-
didates, but they will be benign and rarely the same length as a candidate.
Puri�cation by length (using denaturing gel electrophoresis) completes the
breeding operation.

The new generation is ready to be processed.
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