Difference between revisions of "Genome Assembly Project: Leland Taylor '12"
(→Assembly Programs) |
(→Vocab) |
||
Line 11: | Line 11: | ||
*AssemblyMethod: Overlap layout consensus | *AssemblyMethod: Overlap layout consensus | ||
− | |||
− | |||
*FileType: .fna | *FileType: .fna | ||
Line 19: | Line 17: | ||
*FileType: .sff | *FileType: .sff | ||
+ | |||
+ | *hybrid ''de novo'' assembly | ||
+ | |||
+ | *k-mer | ||
+ | **the larger the kmer the longer the overlap between two reads has to be. that's also a reason why the kmer can never be larger then your minimum read length. SO an assembly at a higher kmer size is always more "accurate"(not talking about better N50) than the one at a lower kmer size. (http://seqanswers.com/forums/showthread.php?t=9396&highlight=Brujin) | ||
*Sanger-based sequencing - first generation sequencing | *Sanger-based sequencing - first generation sequencing |
Revision as of 15:58, 23 May 2011
Contents
Useful Links
http://phagesdb.org/ - phage database. Assembled versions of the raw files we have are located here
http://www.cbcb.umd.edu/ - UMD bioinformatics center. Good open source programs. Also includes AMOS
http://seqanswers.com/forums/showthread.php?t=43 - a good list of assembly programs
Vocab
- AssemblyMethod: Brujin graphs
- "when reads are so long it is better use an overlap layout method in order to avoid a great number of false positives" http://seqanswers.com/forums/showthread.php?t=5092&highlight=Brujin
- AssemblyMethod: Overlap layout consensus
- FileType: .fna
- FileType: .qual
- FileType: .sff
- hybrid de novo assembly
- k-mer
- the larger the kmer the longer the overlap between two reads has to be. that's also a reason why the kmer can never be larger then your minimum read length. SO an assembly at a higher kmer size is always more "accurate"(not talking about better N50) than the one at a lower kmer size. (http://seqanswers.com/forums/showthread.php?t=9396&highlight=Brujin)
- Sanger-based sequencing - first generation sequencing
Assembly Programs
- Newbler
- An Overlap Layout Consensus assembler.
- Good for reads > 250nt (http://seqanswers.com/forums/showthread.php?t=5092&highlight=Brujin).
- May be made by 454 company.
- Good blog: http://contig.wordpress.com/
Big Questions
De novo or Reference based assembly?
November 21 2024
Looking at the raw assembly files, it looks like our reads are ~500nt on average. We do have small ones ~50nt.
The database includes three file types: .fna .qual .sff
Kingsford, C., Schatz, M.C. & Pop, M. Assembly complexity of prokaryotic genomes using short reads. BMC Bioinformatics 11, 21 (2010).
Notes
- Use De Brujin graphs to estimate "completeness" of genomes assembled via de novo assembly
- Find Eulerian path(s) in these graphs
- Note the assumptions made in the paper
- PROGRAM: Jellyfish - counts k-mers http://www.cbcb.umd.edu/software/jellyfish/
- Lists compression techniques and the order to employ them
- Can use this method to compute N50
- N50 = the length of the largest contig (m) such that at least 50% of genome covered by contigs of size >= m.
- A higher N50 score usually correlates to a more "correct" genome
- Regardless of correctness of genome, for nearly all read sizes (1000nt > size > 25nt), 85%+ of genes accurately identified (85% is for 25nt reads).
Thoughts
- Look for assembler that uses De Brujin graph?
- PROGRAM: EULER-SR - Short read de novo assembly. By Mark J. Chaisson and Pavel A. Pevzner from UCSD (published in Genome Research). Uses a de Bruijn graph approach. http://euler-assembler.ucsd.edu/portal/
- This paper showed how to get an upper limit of correctness of genome. Compare several existing de novo assemblers using the methods here as comparison.
- Is it possible to get the code used in this project?
Pop, M. Genome assembly reborn: recent computational challenges. Briefings in Bioinformatics 10, 354-366 (2009).
Notes
Thoughts
Basic Timeline
- 1st – 2nd Week
- Learn how to manipulate and handle raw read files.
- Familiarize myself with key sources listed above.
- Write module to calculate fold coverage using genome size estimate and total size of all reads.
- Write a prioritized list of features and goals for my program.
- 3rd – 6th week
- Develop my program in modules according to the prioritized features.
- Compare my program’s genome to previously assembled genomes from this raw data.
- Quantify the accuracy of my genome by testing for the size of a predicted gap or feature in the genome to size of that actual segment of DNA in the blueberry genome.
- Edit the program based on any issues encountered with the full data set.
- 7th – 10th week (Ending: July 29, 2011)
- Finish wet-lab accuracy tests
- Fine–tune the program based on any issues encountered with the full data set.
- Attempt to assemble the “Meatball” phage genome.