Difference between revisions of "Divide and Conquer Biological Challenges"
From GcatWiki
MaCampbell (talk | contribs) (→* We need to have an XOR logic gate produced.) |
MaCampbell (talk | contribs) (→* We need to get the Lux/AHL system working.) |
||
Line 2: | Line 2: | ||
=== * We need to get the Lux/AHL system working. === | === * We need to get the Lux/AHL system working. === | ||
+ | LuxR | ||
+ | LuxI | ||
+ | lux pR | ||
+ | |||
=== * We need to get the Lsr/AI-2 system working. === | === * We need to get the Lsr/AI-2 system working. === | ||
'''Our summary of the Lsr system:''' [[Davidson/Missouri_Western_iGEM2008#Lsr_.28AI-2.29_cell_signaling_system]]<br> | '''Our summary of the Lsr system:''' [[Davidson/Missouri_Western_iGEM2008#Lsr_.28AI-2.29_cell_signaling_system]]<br> |
Revision as of 21:18, 28 May 2008
Contents
- 1 * We need to get the Lux/AHL system working.
- 2 * We need to get the Lsr/AI-2 system working.
- 3 * We do NOT need to use additional chemical input signals (e.g., aTc and IPTG). We will use only AHL and AI-2 added exogenously.
- 4 * We need to have an XOR logic gate produced.
- 5 * We need to figure out how to get cells to communicate in a sequence and not stop growing too soon.
* We need to get the Lux/AHL system working.
LuxR LuxI lux pR
* We need to get the Lsr/AI-2 system working.
Our summary of the Lsr system: Davidson/Missouri_Western_iGEM2008#Lsr_.28AI-2.29_cell_signaling_system
- There are NO Lsr parts in the registry:
- We will need to make BB parts for:
- LsrR and LsrK which are adjacent to each other in the E. coli genome. We could amplify them together with a total size of over 2600bp.
- Lsr promoter
- LuxS that produces DPD that somehow is converted to R-THMF.
- How do we get cells to make AI-2?
* We do NOT need to use additional chemical input signals (e.g., aTc and IPTG). We will use only AHL and AI-2 added exogenously.
* We need to have an XOR logic gate produced.
Existing Logic Gates
- NOT:
- AND: (insert links to examples here)
- NAND:
- NOR:
- Inverters:
* We need to figure out how to get cells to communicate in a sequence and not stop growing too soon.
- What if AmpR is secreted and cells are not AmpR? This would prevent cells down the chain from responding too soon.