Difference between revisions of "Summer 2012 SynBio Project (Davidson and MWSU)"

From GcatWiki
Jump to: navigation, search
(Questions to Consider About Network Pathways)
(Questions to Consider About Network Pathways)
Line 107: Line 107:
  
 
* Are they naturally occurring or synthetic?
 
* Are they naturally occurring or synthetic?
[[Natural vs. synthetic proposed pathways]]
 
  
 
* Do they involve screening or selection?
 
* Do they involve screening or selection?
[[Screening vs. selection outline]]
 
  
 
* Are they anabolic or catabolic?
 
* Are they anabolic or catabolic?
[[Anabolic vs. catabolic pathways]]
 
  
 
* How many steps are in each pathway?
 
* How many steps are in each pathway?
 
[[Number of steps in proposed network pathways]]
 
  
 
* How can they relate to cell fitness?
 
* How can they relate to cell fitness?

Revision as of 20:05, 25 May 2012

Summer 2012 Synthetic Biology Project: MWSU and Davidson College


  1. Davidson Protocols
  2. MWSU_protocols
  3. GCAT-alog Freezer Stocks
  4. Laboratory_Notebooks
  5. Golden Gate


Student Proposals from Ind. Studies

-I think the use of Phytochromes might be a good way to have either a continual stimulus that would repress/express certain genes that could be turned off and on depending on what we want them to do. There are other aspects of the research in this proposal that if not used outright, could be adapted to our continuing projects as either controls or feedback mechanisms. As for the proposed Salis RBS sites, I would like to see more information in the efficacy of the predicted RBS sequence. Possibly if we could use some of the C-Dog information based on a few known sequences to determine if the computer can predict those RBS's we know to be effective then we might be able to count on the calculator as a tool for our experimental design. -Caleb Carr



PPT Presentations

  • This PPT file contains all the slides from student presentations addressing the idea proposed by MWSU.

Media:Reports_on_Circuits.pptx

  • This PPT contains slides summarizing some of the best and most complicated papers from Week 11.

Media:Week_11.pptx

Papers

Methods Papers

  • DNA assembly for synthetic biology: from parts to pathways and beyond

Tom Ellis, Tom Adieac and Geoff S. Baldwin
Integr. Biol., 2011, 3, 109–118

  • Everyone should watch this 5 minute video on optogenetics. Combine that video with the 2010 champoinship iGEM invention of E. glowi.


Older Lab Papers

  • Engineering bacteria to solve the Burnt Pancake Problem.

Haynes, Karmella, et al.
Journal of Biological Engineering. Vol. 2(8): 1 – 12.

  • Solving a Hamiltonian Path Problem with a Bacterial Computer.

Baumgardner, Jordan et al.
Journal of Biological Engineering. Vol. 3:11

  • Bacterial Hash Function Using DNA-Based XOR Logic Reveals Unexpected Behavior of the LuxR Promoter.

Brianna Pearson*, Kin H. Lau* et al.
Interdisciplinary Bio Central. Vol. 3, article no. 10.
Time Delayed Growth Movie


Network Papers

Jonathan M. Raser and Erin K. O’Shea
Science. Vol. 309, page 2010

Please post pdf.

Nagarajan Nandagopal and Michael B. Elowitz
Science. Vol. 333, page 1244.

Please post pdf.

R. Milo, S. Shen-Orr, et al
Science. Vol. 298, page 824.

Please post pdf.

Yang-Yu Liu, Jean-Jacques Slotine, & Albert-La ́szlo ́ Baraba ́si
Nature. 2011. Vol. 473, page 167.

Please post pdf.


Ethics Papers

Colin Mcilswain
Nature. Vol 465, page 867.


Questions to Consider About Network Pathways

  • Are they naturally occurring or synthetic?
  • Do they involve screening or selection?
  • Are they anabolic or catabolic?
  • How many steps are in each pathway?
  • How can they relate to cell fitness?
  • What specific challenges would need to be addressed if we worked with the pathway?

Network Pathways Chart

Cellular Automata

  • [1] General CA introduction
  • [2], [3] Elementary Cellular Automata
  • [4] Good explanation of how elementary CAs work
  • [5] Rule 110


Other Ideas